Whakaoti mō x, y
x=6
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-5y=14,-2x-7y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-5y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=5y+14
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=-\left(5y+14\right)
Whakawehea ngā taha e rua ki te -1.
x=-5y-14
Whakareatia -1 ki te 5y+14.
-2\left(-5y-14\right)-7y=16
Whakakapia te -5y-14 mō te x ki tērā atu whārite, -2x-7y=16.
10y+28-7y=16
Whakareatia -2 ki te -5y-14.
3y+28=16
Tāpiri 10y ki te -7y.
3y=-12
Me tango 28 mai i ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te 3.
x=-5\left(-4\right)-14
Whakaurua te -4 mō y ki x=-5y-14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=20-14
Whakareatia -5 ki te -4.
x=6
Tāpiri -14 ki te 20.
x=6,y=-4
Kua oti te pūnaha te whakatau.
-x-5y=14,-2x-7y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{-5}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\\-\frac{-2}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{1}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{5}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\times 14-\frac{5}{3}\times 16\\-\frac{2}{3}\times 14+\frac{1}{3}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=-4
Tangohia ngā huānga poukapa x me y.
-x-5y=14,-2x-7y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\left(-1\right)x-2\left(-5\right)y=-2\times 14,-\left(-2\right)x-\left(-7y\right)=-16
Kia ōrite ai a -x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
2x+10y=-28,2x+7y=-16
Whakarūnātia.
2x-2x+10y-7y=-28+16
Me tango 2x+7y=-16 mai i 2x+10y=-28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-7y=-28+16
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=-28+16
Tāpiri 10y ki te -7y.
3y=-12
Tāpiri -28 ki te 16.
y=-4
Whakawehea ngā taha e rua ki te 3.
-2x-7\left(-4\right)=16
Whakaurua te -4 mō y ki -2x-7y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+28=16
Whakareatia -7 ki te -4.
-2x=-12
Me tango 28 mai i ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te -2.
x=6,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}