Whakaoti mō x, y
x=9
y=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-3y=6,2x+3y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-3y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=3y+6
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=-\left(3y+6\right)
Whakawehea ngā taha e rua ki te -1.
x=-3y-6
Whakareatia -1 ki te 6+3y.
2\left(-3y-6\right)+3y=3
Whakakapia te -3y-6 mō te x ki tērā atu whārite, 2x+3y=3.
-6y-12+3y=3
Whakareatia 2 ki te -3y-6.
-3y-12=3
Tāpiri -6y ki te 3y.
-3y=15
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=-5
Whakawehea ngā taha e rua ki te -3.
x=-3\left(-5\right)-6
Whakaurua te -5 mō y ki x=-3y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=15-6
Whakareatia -3 ki te -5.
x=9
Tāpiri -6 ki te 15.
x=9,y=-5
Kua oti te pūnaha te whakatau.
-x-3y=6,2x+3y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3-\left(-3\times 2\right)}&-\frac{-3}{-3-\left(-3\times 2\right)}\\-\frac{2}{-3-\left(-3\times 2\right)}&-\frac{1}{-3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6+3\\-\frac{2}{3}\times 6-\frac{1}{3}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=-5
Tangohia ngā huānga poukapa x me y.
-x-3y=6,2x+3y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-1\right)x+2\left(-3\right)y=2\times 6,-2x-3y=-3
Kia ōrite ai a -x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-2x-6y=12,-2x-3y=-3
Whakarūnātia.
-2x+2x-6y+3y=12+3
Me tango -2x-3y=-3 mai i -2x-6y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+3y=12+3
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=12+3
Tāpiri -6y ki te 3y.
-3y=15
Tāpiri 12 ki te 3.
y=-5
Whakawehea ngā taha e rua ki te -3.
2x+3\left(-5\right)=3
Whakaurua te -5 mō y ki 2x+3y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-15=3
Whakareatia 3 ki te -5.
2x=18
Me tāpiri 15 ki ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te 2.
x=9,y=-5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}