Whakaoti mō x, y
x=9
y=-7
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-3y=12,-5x-9y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-3y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=3y+12
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=-\left(3y+12\right)
Whakawehea ngā taha e rua ki te -1.
x=-3y-12
Whakareatia -1 ki te 12+3y.
-5\left(-3y-12\right)-9y=18
Whakakapia te -3y-12 mō te x ki tērā atu whārite, -5x-9y=18.
15y+60-9y=18
Whakareatia -5 ki te -3y-12.
6y+60=18
Tāpiri 15y ki te -9y.
6y=-42
Me tango 60 mai i ngā taha e rua o te whārite.
y=-7
Whakawehea ngā taha e rua ki te 6.
x=-3\left(-7\right)-12
Whakaurua te -7 mō y ki x=-3y-12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=21-12
Whakareatia -3 ki te -7.
x=9
Tāpiri -12 ki te 21.
x=9,y=-7
Kua oti te pūnaha te whakatau.
-x-3y=12,-5x-9y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-3\\-5&-9\end{matrix}\right))\left(\begin{matrix}12\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-\left(-9\right)-\left(-3\left(-5\right)\right)}&-\frac{-3}{-\left(-9\right)-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-\left(-9\right)-\left(-3\left(-5\right)\right)}&-\frac{1}{-\left(-9\right)-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\-\frac{5}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}12\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 12-\frac{1}{2}\times 18\\-\frac{5}{6}\times 12+\frac{1}{6}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=-7
Tangohia ngā huānga poukapa x me y.
-x-3y=12,-5x-9y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\left(-1\right)x-5\left(-3\right)y=-5\times 12,-\left(-5\right)x-\left(-9y\right)=-18
Kia ōrite ai a -x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
5x+15y=-60,5x+9y=-18
Whakarūnātia.
5x-5x+15y-9y=-60+18
Me tango 5x+9y=-18 mai i 5x+15y=-60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-9y=-60+18
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=-60+18
Tāpiri 15y ki te -9y.
6y=-42
Tāpiri -60 ki te 18.
y=-7
Whakawehea ngā taha e rua ki te 6.
-5x-9\left(-7\right)=18
Whakaurua te -7 mō y ki -5x-9y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x+63=18
Whakareatia -9 ki te -7.
-5x=-45
Me tango 63 mai i ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te -5.
x=9,y=-7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}