Whakaoti mō x, y
x=3
y=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-2y=9,3x-2y=21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-2y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=2y+9
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=-\left(2y+9\right)
Whakawehea ngā taha e rua ki te -1.
x=-2y-9
Whakareatia -1 ki te 2y+9.
3\left(-2y-9\right)-2y=21
Whakakapia te -2y-9 mō te x ki tērā atu whārite, 3x-2y=21.
-6y-27-2y=21
Whakareatia 3 ki te -2y-9.
-8y-27=21
Tāpiri -6y ki te -2y.
-8y=48
Me tāpiri 27 ki ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua ki te -8.
x=-2\left(-6\right)-9
Whakaurua te -6 mō y ki x=-2y-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=12-9
Whakareatia -2 ki te -6.
x=3
Tāpiri -9 ki te 12.
x=3,y=-6
Kua oti te pūnaha te whakatau.
-x-2y=9,3x-2y=21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}-1&-2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}9\\21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-2\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}9\\21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}9\\21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-2\times 3\right)}&-\frac{-2}{-\left(-2\right)-\left(-2\times 3\right)}\\-\frac{3}{-\left(-2\right)-\left(-2\times 3\right)}&-\frac{1}{-\left(-2\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}9\\21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}9\\21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 9+\frac{1}{4}\times 21\\-\frac{3}{8}\times 9-\frac{1}{8}\times 21\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-6
Tangohia ngā huānga poukapa x me y.
-x-2y=9,3x-2y=21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-3x-2y+2y=9-21
Me tango 3x-2y=21 mai i -x-2y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-x-3x=9-21
Tāpiri -2y ki te 2y. Ka whakakore atu ngā kupu -2y me 2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=9-21
Tāpiri -x ki te -3x.
-4x=-12
Tāpiri 9 ki te -21.
x=3
Whakawehea ngā taha e rua ki te -4.
3\times 3-2y=21
Whakaurua te 3 mō x ki 3x-2y=21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
9-2y=21
Whakareatia 3 ki te 3.
-2y=12
Me tango 9 mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua ki te -2.
x=3,y=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}