Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x-2y=4,3x-y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-2y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=2y+4
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=-\left(2y+4\right)
Whakawehea ngā taha e rua ki te -1.
x=-2y-4
Whakareatia -1 ki te 4+2y.
3\left(-2y-4\right)-y=2
Whakakapia te -2y-4 mō te x ki tērā atu whārite, 3x-y=2.
-6y-12-y=2
Whakareatia 3 ki te -2y-4.
-7y-12=2
Tāpiri -6y ki te -y.
-7y=14
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -7.
x=-2\left(-2\right)-4
Whakaurua te -2 mō y ki x=-2y-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4-4
Whakareatia -2 ki te -2.
x=0
Tāpiri -4 ki te 4.
x=0,y=-2
Kua oti te pūnaha te whakatau.
-x-2y=4,3x-y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\left(-2\times 3\right)}&-\frac{-2}{-\left(-1\right)-\left(-2\times 3\right)}\\-\frac{3}{-\left(-1\right)-\left(-2\times 3\right)}&-\frac{1}{-\left(-1\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{2}{7}\\-\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 4+\frac{2}{7}\times 2\\-\frac{3}{7}\times 4-\frac{1}{7}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-2
Tangohia ngā huānga poukapa x me y.
-x-2y=4,3x-y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-1\right)x+3\left(-2\right)y=3\times 4,-3x-\left(-y\right)=-2
Kia ōrite ai a -x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-3x-6y=12,-3x+y=-2
Whakarūnātia.
-3x+3x-6y-y=12+2
Me tango -3x+y=-2 mai i -3x-6y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-y=12+2
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=12+2
Tāpiri -6y ki te -y.
-7y=14
Tāpiri 12 ki te 2.
y=-2
Whakawehea ngā taha e rua ki te -7.
3x-\left(-2\right)=2
Whakaurua te -2 mō y ki 3x-y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=0
Me tango 2 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=-2
Kua oti te pūnaha te whakatau.