Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x-2y=-7,2x+2y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-2y=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=2y-7
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=-\left(2y-7\right)
Whakawehea ngā taha e rua ki te -1.
x=-2y+7
Whakareatia -1 ki te 2y-7.
2\left(-2y+7\right)+2y=16
Whakakapia te -2y+7 mō te x ki tērā atu whārite, 2x+2y=16.
-4y+14+2y=16
Whakareatia 2 ki te -2y+7.
-2y+14=16
Tāpiri -4y ki te 2y.
-2y=2
Me tango 14 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -2.
x=-2\left(-1\right)+7
Whakaurua te -1 mō y ki x=-2y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2+7
Whakareatia -2 ki te -1.
x=9
Tāpiri 7 ki te 2.
x=9,y=-1
Kua oti te pūnaha te whakatau.
-x-2y=-7,2x+2y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-2\\2&2\end{matrix}\right))\left(\begin{matrix}-1&-2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\2&2\end{matrix}\right))\left(\begin{matrix}-7\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-2\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\2&2\end{matrix}\right))\left(\begin{matrix}-7\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\2&2\end{matrix}\right))\left(\begin{matrix}-7\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-\left(-2\times 2\right)}&-\frac{-2}{-2-\left(-2\times 2\right)}\\-\frac{2}{-2-\left(-2\times 2\right)}&-\frac{1}{-2-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-7\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-7\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7+16\\-\left(-7\right)-\frac{1}{2}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=-1
Tangohia ngā huānga poukapa x me y.
-x-2y=-7,2x+2y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-1\right)x+2\left(-2\right)y=2\left(-7\right),-2x-2y=-16
Kia ōrite ai a -x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-2x-4y=-14,-2x-2y=-16
Whakarūnātia.
-2x+2x-4y+2y=-14+16
Me tango -2x-2y=-16 mai i -2x-4y=-14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y+2y=-14+16
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=-14+16
Tāpiri -4y ki te 2y.
-2y=2
Tāpiri -14 ki te 16.
y=-1
Whakawehea ngā taha e rua ki te -2.
2x+2\left(-1\right)=16
Whakaurua te -1 mō y ki 2x+2y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-2=16
Whakareatia 2 ki te -1.
2x=18
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te 2.
x=9,y=-1
Kua oti te pūnaha te whakatau.