Whakaoti mō x, y
x=-\frac{5}{7}\approx -0.714285714
y = \frac{9}{7} = 1\frac{2}{7} \approx 1.285714286
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y-9x=9
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
-x+y=2,-9x+2y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-y+2
Me tango y mai i ngā taha e rua o te whārite.
x=-\left(-y+2\right)
Whakawehea ngā taha e rua ki te -1.
x=y-2
Whakareatia -1 ki te -y+2.
-9\left(y-2\right)+2y=9
Whakakapia te y-2 mō te x ki tērā atu whārite, -9x+2y=9.
-9y+18+2y=9
Whakareatia -9 ki te y-2.
-7y+18=9
Tāpiri -9y ki te 2y.
-7y=-9
Me tango 18 mai i ngā taha e rua o te whārite.
y=\frac{9}{7}
Whakawehea ngā taha e rua ki te -7.
x=\frac{9}{7}-2
Whakaurua te \frac{9}{7} mō y ki x=y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5}{7}
Tāpiri -2 ki te \frac{9}{7}.
x=-\frac{5}{7},y=\frac{9}{7}
Kua oti te pūnaha te whakatau.
2y-9x=9
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
-x+y=2,-9x+2y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&1\\-9&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&1\\-9&2\end{matrix}\right))\left(\begin{matrix}-1&1\\-9&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\-9&2\end{matrix}\right))\left(\begin{matrix}2\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&1\\-9&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\-9&2\end{matrix}\right))\left(\begin{matrix}2\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\-9&2\end{matrix}\right))\left(\begin{matrix}2\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-\left(-9\right)}&-\frac{1}{-2-\left(-9\right)}\\-\frac{-9}{-2-\left(-9\right)}&-\frac{1}{-2-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}2\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&-\frac{1}{7}\\\frac{9}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}2\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2-\frac{1}{7}\times 9\\\frac{9}{7}\times 2-\frac{1}{7}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{7}\\\frac{9}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{5}{7},y=\frac{9}{7}
Tangohia ngā huānga poukapa x me y.
2y-9x=9
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
-x+y=2,-9x+2y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-9\left(-1\right)x-9y=-9\times 2,-\left(-9\right)x-2y=-9
Kia ōrite ai a -x me -9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
9x-9y=-18,9x-2y=-9
Whakarūnātia.
9x-9x-9y+2y=-18+9
Me tango 9x-2y=-9 mai i 9x-9y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y+2y=-18+9
Tāpiri 9x ki te -9x. Ka whakakore atu ngā kupu 9x me -9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-18+9
Tāpiri -9y ki te 2y.
-7y=-9
Tāpiri -18 ki te 9.
y=\frac{9}{7}
Whakawehea ngā taha e rua ki te -7.
-9x+2\times \frac{9}{7}=9
Whakaurua te \frac{9}{7} mō y ki -9x+2y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-9x+\frac{18}{7}=9
Whakareatia 2 ki te \frac{9}{7}.
-9x=\frac{45}{7}
Me tango \frac{18}{7} mai i ngā taha e rua o te whārite.
x=-\frac{5}{7}
Whakawehea ngā taha e rua ki te -9.
x=-\frac{5}{7},y=\frac{9}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}