Whakaoti mō x, y
x=-2
y=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+y=-6,3x-2y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-y-6
Me tango y mai i ngā taha e rua o te whārite.
x=-\left(-y-6\right)
Whakawehea ngā taha e rua ki te -1.
x=y+6
Whakareatia -1 ki te -y-6.
3\left(y+6\right)-2y=10
Whakakapia te y+6 mō te x ki tērā atu whārite, 3x-2y=10.
3y+18-2y=10
Whakareatia 3 ki te y+6.
y+18=10
Tāpiri 3y ki te -2y.
y=-8
Me tango 18 mai i ngā taha e rua o te whārite.
x=-8+6
Whakaurua te -8 mō y ki x=y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Tāpiri 6 ki te -8.
x=-2,y=-8
Kua oti te pūnaha te whakatau.
-x+y=-6,3x-2y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&1\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\\-\frac{3}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-6\right)+10\\3\left(-6\right)+10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=-8
Tangohia ngā huānga poukapa x me y.
-x+y=-6,3x-2y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-1\right)x+3y=3\left(-6\right),-3x-\left(-2y\right)=-10
Kia ōrite ai a -x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-3x+3y=-18,-3x+2y=-10
Whakarūnātia.
-3x+3x+3y-2y=-18+10
Me tango -3x+2y=-10 mai i -3x+3y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-2y=-18+10
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=-18+10
Tāpiri 3y ki te -2y.
y=-8
Tāpiri -18 ki te 10.
3x-2\left(-8\right)=10
Whakaurua te -8 mō y ki 3x-2y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+16=10
Whakareatia -2 ki te -8.
3x=-6
Me tango 16 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 3.
x=-2,y=-8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}