Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x+6y=20,-x+3y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+6y=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-6y+20
Me tango 6y mai i ngā taha e rua o te whārite.
x=-\left(-6y+20\right)
Whakawehea ngā taha e rua ki te -1.
x=6y-20
Whakareatia -1 ki te -6y+20.
-\left(6y-20\right)+3y=8
Whakakapia te 6y-20 mō te x ki tērā atu whārite, -x+3y=8.
-6y+20+3y=8
Whakareatia -1 ki te 6y-20.
-3y+20=8
Tāpiri -6y ki te 3y.
-3y=-12
Me tango 20 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -3.
x=6\times 4-20
Whakaurua te 4 mō y ki x=6y-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=24-20
Whakareatia 6 ki te 4.
x=4
Tāpiri -20 ki te 24.
x=4,y=4
Kua oti te pūnaha te whakatau.
-x+6y=20,-x+3y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&6\\-1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3-6\left(-1\right)}&-\frac{6}{-3-6\left(-1\right)}\\-\frac{-1}{-3-6\left(-1\right)}&-\frac{1}{-3-6\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20-2\times 8\\\frac{1}{3}\times 20-\frac{1}{3}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=4
Tangohia ngā huānga poukapa x me y.
-x+6y=20,-x+3y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x+x+6y-3y=20-8
Me tango -x+3y=8 mai i -x+6y=20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-3y=20-8
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=20-8
Tāpiri 6y ki te -3y.
3y=12
Tāpiri 20 ki te -8.
y=4
Whakawehea ngā taha e rua ki te 3.
-x+3\times 4=8
Whakaurua te 4 mō y ki -x+3y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+12=8
Whakareatia 3 ki te 4.
-x=-4
Me tango 12 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te -1.
x=4,y=4
Kua oti te pūnaha te whakatau.