Whakaoti mō x, y
x = \frac{27}{7} = 3\frac{6}{7} \approx 3.857142857
y=\frac{4}{7}\approx 0.571428571
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+5y=-1,x+2y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+5y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-5y-1
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\left(-5y-1\right)
Whakawehea ngā taha e rua ki te -1.
x=5y+1
Whakareatia -1 ki te -5y-1.
5y+1+2y=5
Whakakapia te 5y+1 mō te x ki tērā atu whārite, x+2y=5.
7y+1=5
Tāpiri 5y ki te 2y.
7y=4
Me tango 1 mai i ngā taha e rua o te whārite.
y=\frac{4}{7}
Whakawehea ngā taha e rua ki te 7.
x=5\times \frac{4}{7}+1
Whakaurua te \frac{4}{7} mō y ki x=5y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{20}{7}+1
Whakareatia 5 ki te \frac{4}{7}.
x=\frac{27}{7}
Tāpiri 1 ki te \frac{20}{7}.
x=\frac{27}{7},y=\frac{4}{7}
Kua oti te pūnaha te whakatau.
-x+5y=-1,x+2y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&5\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1&5\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&5\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-5}&-\frac{5}{-2-5}\\-\frac{1}{-2-5}&-\frac{1}{-2-5}\end{matrix}\right)\left(\begin{matrix}-1\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{5}{7}\\\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-1\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\left(-1\right)+\frac{5}{7}\times 5\\\frac{1}{7}\left(-1\right)+\frac{1}{7}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{7}\\\frac{4}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{27}{7},y=\frac{4}{7}
Tangohia ngā huānga poukapa x me y.
-x+5y=-1,x+2y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x+5y=-1,-x-2y=-5
Kia ōrite ai a -x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-x+x+5y+2y=-1+5
Me tango -x-2y=-5 mai i -x+5y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+2y=-1+5
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=-1+5
Tāpiri 5y ki te 2y.
7y=4
Tāpiri -1 ki te 5.
y=\frac{4}{7}
Whakawehea ngā taha e rua ki te 7.
x+2\times \frac{4}{7}=5
Whakaurua te \frac{4}{7} mō y ki x+2y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{8}{7}=5
Whakareatia 2 ki te \frac{4}{7}.
x=\frac{27}{7}
Me tango \frac{8}{7} mai i ngā taha e rua o te whārite.
x=\frac{27}{7},y=\frac{4}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}