Whakaoti mō x, y
x=-9
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+2y=17,2x+2y=-10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+2y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-2y+17
Me tango 2y mai i ngā taha e rua o te whārite.
x=-\left(-2y+17\right)
Whakawehea ngā taha e rua ki te -1.
x=2y-17
Whakareatia -1 ki te -2y+17.
2\left(2y-17\right)+2y=-10
Whakakapia te 2y-17 mō te x ki tērā atu whārite, 2x+2y=-10.
4y-34+2y=-10
Whakareatia 2 ki te 2y-17.
6y-34=-10
Tāpiri 4y ki te 2y.
6y=24
Me tāpiri 34 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te 6.
x=2\times 4-17
Whakaurua te 4 mō y ki x=2y-17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8-17
Whakareatia 2 ki te 4.
x=-9
Tāpiri -17 ki te 8.
x=-9,y=4
Kua oti te pūnaha te whakatau.
-x+2y=17,2x+2y=-10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}-1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&2\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&2\end{matrix}\right))\left(\begin{matrix}17\\-10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-2\times 2}&-\frac{2}{-2-2\times 2}\\-\frac{2}{-2-2\times 2}&-\frac{1}{-2-2\times 2}\end{matrix}\right)\left(\begin{matrix}17\\-10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}17\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 17+\frac{1}{3}\left(-10\right)\\\frac{1}{3}\times 17+\frac{1}{6}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-9,y=4
Tangohia ngā huānga poukapa x me y.
-x+2y=17,2x+2y=-10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-2x+2y-2y=17+10
Me tango 2x+2y=-10 mai i -x+2y=17 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-x-2x=17+10
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3x=17+10
Tāpiri -x ki te -2x.
-3x=27
Tāpiri 17 ki te 10.
x=-9
Whakawehea ngā taha e rua ki te -3.
2\left(-9\right)+2y=-10
Whakaurua te -9 mō x ki 2x+2y=-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-18+2y=-10
Whakareatia 2 ki te -9.
2y=8
Me tāpiri 18 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te 2.
x=-9,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}