Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x+\frac{3}{4}y=7,4x-y=-16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+\frac{3}{4}y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-\frac{3}{4}y+7
Me tango \frac{3y}{4} mai i ngā taha e rua o te whārite.
x=-\left(-\frac{3}{4}y+7\right)
Whakawehea ngā taha e rua ki te -1.
x=\frac{3}{4}y-7
Whakareatia -1 ki te -\frac{3y}{4}+7.
4\left(\frac{3}{4}y-7\right)-y=-16
Whakakapia te \frac{3y}{4}-7 mō te x ki tērā atu whārite, 4x-y=-16.
3y-28-y=-16
Whakareatia 4 ki te \frac{3y}{4}-7.
2y-28=-16
Tāpiri 3y ki te -y.
2y=12
Me tāpiri 28 ki ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{4}\times 6-7
Whakaurua te 6 mō y ki x=\frac{3}{4}y-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9}{2}-7
Whakareatia \frac{3}{4} ki te 6.
x=-\frac{5}{2}
Tāpiri -7 ki te \frac{9}{2}.
x=-\frac{5}{2},y=6
Kua oti te pūnaha te whakatau.
-x+\frac{3}{4}y=7,4x-y=-16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&\frac{3}{4}\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&\frac{3}{4}\\4&-1\end{matrix}\right))\left(\begin{matrix}-1&\frac{3}{4}\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&\frac{3}{4}\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&\frac{3}{4}\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&\frac{3}{4}\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&\frac{3}{4}\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\frac{3}{4}\times 4}&-\frac{\frac{3}{4}}{-\left(-1\right)-\frac{3}{4}\times 4}\\-\frac{4}{-\left(-1\right)-\frac{3}{4}\times 4}&-\frac{1}{-\left(-1\right)-\frac{3}{4}\times 4}\end{matrix}\right)\left(\begin{matrix}7\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{3}{8}\\2&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}7\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 7+\frac{3}{8}\left(-16\right)\\2\times 7+\frac{1}{2}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{5}{2},y=6
Tangohia ngā huānga poukapa x me y.
-x+\frac{3}{4}y=7,4x-y=-16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-1\right)x+4\times \frac{3}{4}y=4\times 7,-4x-\left(-y\right)=-\left(-16\right)
Kia ōrite ai a -x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-4x+3y=28,-4x+y=16
Whakarūnātia.
-4x+4x+3y-y=28-16
Me tango -4x+y=16 mai i -4x+3y=28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-y=28-16
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=28-16
Tāpiri 3y ki te -y.
2y=12
Tāpiri 28 ki te -16.
y=6
Whakawehea ngā taha e rua ki te 2.
4x-6=-16
Whakaurua te 6 mō y ki 4x-y=-16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=-10
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{5}{2},y=6
Kua oti te pūnaha te whakatau.