Whakaoti mō y, x
x=-9
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9y-13x=81
Whakaarohia te whārite tuatahi. Tangohia te 13x mai i ngā taha e rua.
\frac{1}{9}y-\frac{5}{81}x=1
Whakaarohia te whārite tuarua. Tangohia te \frac{5}{81}x mai i ngā taha e rua.
-9y-13x=81,\frac{1}{9}y-\frac{5}{81}x=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-9y-13x=81
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
-9y=13x+81
Me tāpiri 13x ki ngā taha e rua o te whārite.
y=-\frac{1}{9}\left(13x+81\right)
Whakawehea ngā taha e rua ki te -9.
y=-\frac{13}{9}x-9
Whakareatia -\frac{1}{9} ki te 13x+81.
\frac{1}{9}\left(-\frac{13}{9}x-9\right)-\frac{5}{81}x=1
Whakakapia te -\frac{13x}{9}-9 mō te y ki tērā atu whārite, \frac{1}{9}y-\frac{5}{81}x=1.
-\frac{13}{81}x-1-\frac{5}{81}x=1
Whakareatia \frac{1}{9} ki te -\frac{13x}{9}-9.
-\frac{2}{9}x-1=1
Tāpiri -\frac{13x}{81} ki te -\frac{5x}{81}.
-\frac{2}{9}x=2
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=-9
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{13}{9}\left(-9\right)-9
Whakaurua te -9 mō x ki y=-\frac{13}{9}x-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=13-9
Whakareatia -\frac{13}{9} ki te -9.
y=4
Tāpiri -9 ki te 13.
y=4,x=-9
Kua oti te pūnaha te whakatau.
-9y-13x=81
Whakaarohia te whārite tuatahi. Tangohia te 13x mai i ngā taha e rua.
\frac{1}{9}y-\frac{5}{81}x=1
Whakaarohia te whārite tuarua. Tangohia te \frac{5}{81}x mai i ngā taha e rua.
-9y-13x=81,\frac{1}{9}y-\frac{5}{81}x=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-9&-13\\\frac{1}{9}&-\frac{5}{81}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}81\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-9&-13\\\frac{1}{9}&-\frac{5}{81}\end{matrix}\right))\left(\begin{matrix}-9&-13\\\frac{1}{9}&-\frac{5}{81}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-13\\\frac{1}{9}&-\frac{5}{81}\end{matrix}\right))\left(\begin{matrix}81\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-9&-13\\\frac{1}{9}&-\frac{5}{81}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-13\\\frac{1}{9}&-\frac{5}{81}\end{matrix}\right))\left(\begin{matrix}81\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-13\\\frac{1}{9}&-\frac{5}{81}\end{matrix}\right))\left(\begin{matrix}81\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{5}{81}}{-9\left(-\frac{5}{81}\right)-\left(-13\times \frac{1}{9}\right)}&-\frac{-13}{-9\left(-\frac{5}{81}\right)-\left(-13\times \frac{1}{9}\right)}\\-\frac{\frac{1}{9}}{-9\left(-\frac{5}{81}\right)-\left(-13\times \frac{1}{9}\right)}&-\frac{9}{-9\left(-\frac{5}{81}\right)-\left(-13\times \frac{1}{9}\right)}\end{matrix}\right)\left(\begin{matrix}81\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{162}&\frac{13}{2}\\-\frac{1}{18}&-\frac{9}{2}\end{matrix}\right)\left(\begin{matrix}81\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{162}\times 81+\frac{13}{2}\\-\frac{1}{18}\times 81-\frac{9}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
y=4,x=-9
Tangohia ngā huānga poukapa y me x.
-9y-13x=81
Whakaarohia te whārite tuatahi. Tangohia te 13x mai i ngā taha e rua.
\frac{1}{9}y-\frac{5}{81}x=1
Whakaarohia te whārite tuarua. Tangohia te \frac{5}{81}x mai i ngā taha e rua.
-9y-13x=81,\frac{1}{9}y-\frac{5}{81}x=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{9}\left(-9\right)y+\frac{1}{9}\left(-13\right)x=\frac{1}{9}\times 81,-9\times \frac{1}{9}y-9\left(-\frac{5}{81}\right)x=-9
Kia ōrite ai a -9y me \frac{y}{9}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{9} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -9.
-y-\frac{13}{9}x=9,-y+\frac{5}{9}x=-9
Whakarūnātia.
-y+y-\frac{13}{9}x-\frac{5}{9}x=9+9
Me tango -y+\frac{5}{9}x=-9 mai i -y-\frac{13}{9}x=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{13}{9}x-\frac{5}{9}x=9+9
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2x=9+9
Tāpiri -\frac{13x}{9} ki te -\frac{5x}{9}.
-2x=18
Tāpiri 9 ki te 9.
x=-9
Whakawehea ngā taha e rua ki te -2.
\frac{1}{9}y-\frac{5}{81}\left(-9\right)=1
Whakaurua te -9 mō x ki \frac{1}{9}y-\frac{5}{81}x=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{1}{9}y+\frac{5}{9}=1
Whakareatia -\frac{5}{81} ki te -9.
\frac{1}{9}y=\frac{4}{9}
Me tango \frac{5}{9} mai i ngā taha e rua o te whārite.
y=4
Me whakarea ngā taha e rua ki te 9.
y=4,x=-9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}