Whakaoti mō x, y
x=1
y=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9x-y=-3,-8x+2y=-20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-9x-y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-9x=y-3
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\frac{1}{9}\left(y-3\right)
Whakawehea ngā taha e rua ki te -9.
x=-\frac{1}{9}y+\frac{1}{3}
Whakareatia -\frac{1}{9} ki te y-3.
-8\left(-\frac{1}{9}y+\frac{1}{3}\right)+2y=-20
Whakakapia te -\frac{y}{9}+\frac{1}{3} mō te x ki tērā atu whārite, -8x+2y=-20.
\frac{8}{9}y-\frac{8}{3}+2y=-20
Whakareatia -8 ki te -\frac{y}{9}+\frac{1}{3}.
\frac{26}{9}y-\frac{8}{3}=-20
Tāpiri \frac{8y}{9} ki te 2y.
\frac{26}{9}y=-\frac{52}{3}
Me tāpiri \frac{8}{3} ki ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua o te whārite ki te \frac{26}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{9}\left(-6\right)+\frac{1}{3}
Whakaurua te -6 mō y ki x=-\frac{1}{9}y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2+1}{3}
Whakareatia -\frac{1}{9} ki te -6.
x=1
Tāpiri \frac{1}{3} ki te \frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-6
Kua oti te pūnaha te whakatau.
-9x-y=-3,-8x+2y=-20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-9&-1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-9&-1\\-8&2\end{matrix}\right))\left(\begin{matrix}-9&-1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-8&2\end{matrix}\right))\left(\begin{matrix}-3\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-9&-1\\-8&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-8&2\end{matrix}\right))\left(\begin{matrix}-3\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-8&2\end{matrix}\right))\left(\begin{matrix}-3\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-9\times 2-\left(-\left(-8\right)\right)}&-\frac{-1}{-9\times 2-\left(-\left(-8\right)\right)}\\-\frac{-8}{-9\times 2-\left(-\left(-8\right)\right)}&-\frac{9}{-9\times 2-\left(-\left(-8\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&-\frac{1}{26}\\-\frac{4}{13}&\frac{9}{26}\end{matrix}\right)\left(\begin{matrix}-3\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\left(-3\right)-\frac{1}{26}\left(-20\right)\\-\frac{4}{13}\left(-3\right)+\frac{9}{26}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-6
Tangohia ngā huānga poukapa x me y.
-9x-y=-3,-8x+2y=-20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8\left(-9\right)x-8\left(-1\right)y=-8\left(-3\right),-9\left(-8\right)x-9\times 2y=-9\left(-20\right)
Kia ōrite ai a -9x me -8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -9.
72x+8y=24,72x-18y=180
Whakarūnātia.
72x-72x+8y+18y=24-180
Me tango 72x-18y=180 mai i 72x+8y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y+18y=24-180
Tāpiri 72x ki te -72x. Ka whakakore atu ngā kupu 72x me -72x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
26y=24-180
Tāpiri 8y ki te 18y.
26y=-156
Tāpiri 24 ki te -180.
y=-6
Whakawehea ngā taha e rua ki te 26.
-8x+2\left(-6\right)=-20
Whakaurua te -6 mō y ki -8x+2y=-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8x-12=-20
Whakareatia 2 ki te -6.
-8x=-8
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -8.
x=1,y=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}