Whakaoti mō x, y
x=2
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9x-y=-14,-x-5y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-9x-y=-14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-9x=y-14
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\frac{1}{9}\left(y-14\right)
Whakawehea ngā taha e rua ki te -9.
x=-\frac{1}{9}y+\frac{14}{9}
Whakareatia -\frac{1}{9} ki te y-14.
-\left(-\frac{1}{9}y+\frac{14}{9}\right)-5y=18
Whakakapia te \frac{-y+14}{9} mō te x ki tērā atu whārite, -x-5y=18.
\frac{1}{9}y-\frac{14}{9}-5y=18
Whakareatia -1 ki te \frac{-y+14}{9}.
-\frac{44}{9}y-\frac{14}{9}=18
Tāpiri \frac{y}{9} ki te -5y.
-\frac{44}{9}y=\frac{176}{9}
Me tāpiri \frac{14}{9} ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{44}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{9}\left(-4\right)+\frac{14}{9}
Whakaurua te -4 mō y ki x=-\frac{1}{9}y+\frac{14}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4+14}{9}
Whakareatia -\frac{1}{9} ki te -4.
x=2
Tāpiri \frac{14}{9} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-4
Kua oti te pūnaha te whakatau.
-9x-y=-14,-x-5y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\\-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{9}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}&\frac{1}{44}\\\frac{1}{44}&-\frac{9}{44}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}\left(-14\right)+\frac{1}{44}\times 18\\\frac{1}{44}\left(-14\right)-\frac{9}{44}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-4
Tangohia ngā huānga poukapa x me y.
-9x-y=-14,-x-5y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-\left(-9\right)x-\left(-y\right)=-\left(-14\right),-9\left(-1\right)x-9\left(-5\right)y=-9\times 18
Kia ōrite ai a -9x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -9.
9x+y=14,9x+45y=-162
Whakarūnātia.
9x-9x+y-45y=14+162
Me tango 9x+45y=-162 mai i 9x+y=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-45y=14+162
Tāpiri 9x ki te -9x. Ka whakakore atu ngā kupu 9x me -9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-44y=14+162
Tāpiri y ki te -45y.
-44y=176
Tāpiri 14 ki te 162.
y=-4
Whakawehea ngā taha e rua ki te -44.
-x-5\left(-4\right)=18
Whakaurua te -4 mō y ki -x-5y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+20=18
Whakareatia -5 ki te -4.
-x=-2
Me tango 20 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -1.
x=2,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}