Whakaoti mō x, y
x=-\frac{88}{3\left(c+12\right)}
y=-\frac{108-13c}{6\left(c+12\right)}
c\neq -12
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9x+6y=13,cx+8y=-12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-9x+6y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-9x=-6y+13
Me tango 6y mai i ngā taha e rua o te whārite.
x=-\frac{1}{9}\left(-6y+13\right)
Whakawehea ngā taha e rua ki te -9.
x=\frac{2}{3}y-\frac{13}{9}
Whakareatia -\frac{1}{9} ki te -6y+13.
c\left(\frac{2}{3}y-\frac{13}{9}\right)+8y=-12
Whakakapia te \frac{2y}{3}-\frac{13}{9} mō te x ki tērā atu whārite, cx+8y=-12.
\frac{2c}{3}y-\frac{13c}{9}+8y=-12
Whakareatia c ki te \frac{2y}{3}-\frac{13}{9}.
\left(\frac{2c}{3}+8\right)y-\frac{13c}{9}=-12
Tāpiri \frac{2cy}{3} ki te 8y.
\left(\frac{2c}{3}+8\right)y=\frac{13c}{9}-12
Me tāpiri \frac{13c}{9} ki ngā taha e rua o te whārite.
y=\frac{13c-108}{6\left(c+12\right)}
Whakawehea ngā taha e rua ki te \frac{2c}{3}+8.
x=\frac{2}{3}\times \frac{13c-108}{6\left(c+12\right)}-\frac{13}{9}
Whakaurua te \frac{-108+13c}{6\left(c+12\right)} mō y ki x=\frac{2}{3}y-\frac{13}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{13c-108}{9\left(c+12\right)}-\frac{13}{9}
Whakareatia \frac{2}{3} ki te \frac{-108+13c}{6\left(c+12\right)}.
x=-\frac{88}{3\left(c+12\right)}
Tāpiri -\frac{13}{9} ki te \frac{-108+13c}{9\left(c+12\right)}.
x=-\frac{88}{3\left(c+12\right)},y=\frac{13c-108}{6\left(c+12\right)}
Kua oti te pūnaha te whakatau.
-9x+6y=13,cx+8y=-12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-9&6\\c&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}-9&6\\c&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}13\\-12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-9&6\\c&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}13\\-12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}13\\-12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-9\times 8-6c}&-\frac{6}{-9\times 8-6c}\\-\frac{c}{-9\times 8-6c}&-\frac{9}{-9\times 8-6c}\end{matrix}\right)\left(\begin{matrix}13\\-12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(c+12\right)}&\frac{1}{c+12}\\\frac{c}{6\left(c+12\right)}&\frac{3}{2\left(c+12\right)}\end{matrix}\right)\left(\begin{matrix}13\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{4}{3\left(c+12\right)}\right)\times 13+\frac{1}{c+12}\left(-12\right)\\\frac{c}{6\left(c+12\right)}\times 13+\frac{3}{2\left(c+12\right)}\left(-12\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{88}{3\left(c+12\right)}\\\frac{13c-108}{6\left(c+12\right)}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{88}{3\left(c+12\right)},y=\frac{13c-108}{6\left(c+12\right)}
Tangohia ngā huānga poukapa x me y.
-9x+6y=13,cx+8y=-12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
c\left(-9\right)x+c\times 6y=c\times 13,-9cx-9\times 8y=-9\left(-12\right)
Kia ōrite ai a -9x me cx, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te c me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -9.
\left(-9c\right)x+6cy=13c,\left(-9c\right)x-72y=108
Whakarūnātia.
\left(-9c\right)x+9cx+6cy+72y=13c-108
Me tango \left(-9c\right)x-72y=108 mai i \left(-9c\right)x+6cy=13c mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6cy+72y=13c-108
Tāpiri -9cx ki te 9cx. Ka whakakore atu ngā kupu -9cx me 9cx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(6c+72\right)y=13c-108
Tāpiri 6cy ki te 72y.
y=\frac{13c-108}{6\left(c+12\right)}
Whakawehea ngā taha e rua ki te 72+6c.
cx+8\times \frac{13c-108}{6\left(c+12\right)}=-12
Whakaurua te \frac{13c-108}{6\left(c+12\right)} mō y ki cx+8y=-12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
cx+\frac{4\left(13c-108\right)}{3\left(c+12\right)}=-12
Whakareatia 8 ki te \frac{13c-108}{6\left(c+12\right)}.
cx=-\frac{88c}{3\left(c+12\right)}
Me tango \frac{4\left(13c-108\right)}{3\left(c+12\right)} mai i ngā taha e rua o te whārite.
x=-\frac{88}{3\left(c+12\right)}
Whakawehea ngā taha e rua ki te c.
x=-\frac{88}{3\left(c+12\right)},y=\frac{13c-108}{6\left(c+12\right)}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}