Whakaoti mō a, b
a=-\frac{41}{62}\approx -0.661290323
b=-\frac{35}{62}\approx -0.564516129
Tohaina
Kua tāruatia ki te papatopenga
3b+5a=-5
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-9a+7b=2,5a+3b=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-9a+7b=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
-9a=-7b+2
Me tango 7b mai i ngā taha e rua o te whārite.
a=-\frac{1}{9}\left(-7b+2\right)
Whakawehea ngā taha e rua ki te -9.
a=\frac{7}{9}b-\frac{2}{9}
Whakareatia -\frac{1}{9} ki te -7b+2.
5\left(\frac{7}{9}b-\frac{2}{9}\right)+3b=-5
Whakakapia te \frac{7b-2}{9} mō te a ki tērā atu whārite, 5a+3b=-5.
\frac{35}{9}b-\frac{10}{9}+3b=-5
Whakareatia 5 ki te \frac{7b-2}{9}.
\frac{62}{9}b-\frac{10}{9}=-5
Tāpiri \frac{35b}{9} ki te 3b.
\frac{62}{9}b=-\frac{35}{9}
Me tāpiri \frac{10}{9} ki ngā taha e rua o te whārite.
b=-\frac{35}{62}
Whakawehea ngā taha e rua o te whārite ki te \frac{62}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=\frac{7}{9}\left(-\frac{35}{62}\right)-\frac{2}{9}
Whakaurua te -\frac{35}{62} mō b ki a=\frac{7}{9}b-\frac{2}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{245}{558}-\frac{2}{9}
Whakareatia \frac{7}{9} ki te -\frac{35}{62} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=-\frac{41}{62}
Tāpiri -\frac{2}{9} ki te -\frac{245}{558} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=-\frac{41}{62},b=-\frac{35}{62}
Kua oti te pūnaha te whakatau.
3b+5a=-5
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-9a+7b=2,5a+3b=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-9&7\\5&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-9&7\\5&3\end{matrix}\right))\left(\begin{matrix}-9&7\\5&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-9&7\\5&3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-9&7\\5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-9&7\\5&3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-9&7\\5&3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-9\times 3-7\times 5}&-\frac{7}{-9\times 3-7\times 5}\\-\frac{5}{-9\times 3-7\times 5}&-\frac{9}{-9\times 3-7\times 5}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{62}&\frac{7}{62}\\\frac{5}{62}&\frac{9}{62}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{62}\times 2+\frac{7}{62}\left(-5\right)\\\frac{5}{62}\times 2+\frac{9}{62}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{41}{62}\\-\frac{35}{62}\end{matrix}\right)
Mahia ngā tātaitanga.
a=-\frac{41}{62},b=-\frac{35}{62}
Tangohia ngā huānga poukapa a me b.
3b+5a=-5
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-9a+7b=2,5a+3b=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\left(-9\right)a+5\times 7b=5\times 2,-9\times 5a-9\times 3b=-9\left(-5\right)
Kia ōrite ai a -9a me 5a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -9.
-45a+35b=10,-45a-27b=45
Whakarūnātia.
-45a+45a+35b+27b=10-45
Me tango -45a-27b=45 mai i -45a+35b=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
35b+27b=10-45
Tāpiri -45a ki te 45a. Ka whakakore atu ngā kupu -45a me 45a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
62b=10-45
Tāpiri 35b ki te 27b.
62b=-35
Tāpiri 10 ki te -45.
b=-\frac{35}{62}
Whakawehea ngā taha e rua ki te 62.
5a+3\left(-\frac{35}{62}\right)=-5
Whakaurua te -\frac{35}{62} mō b ki 5a+3b=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
5a-\frac{105}{62}=-5
Whakareatia 3 ki te -\frac{35}{62}.
5a=-\frac{205}{62}
Me tāpiri \frac{105}{62} ki ngā taha e rua o te whārite.
a=-\frac{41}{62}
Whakawehea ngā taha e rua ki te 5.
a=-\frac{41}{62},b=-\frac{35}{62}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}