Whakaoti mō x, y
x=-10
y=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
-8x-9y=-10,-4x-3y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-8x-9y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-8x=9y-10
Me tāpiri 9y ki ngā taha e rua o te whārite.
x=-\frac{1}{8}\left(9y-10\right)
Whakawehea ngā taha e rua ki te -8.
x=-\frac{9}{8}y+\frac{5}{4}
Whakareatia -\frac{1}{8} ki te 9y-10.
-4\left(-\frac{9}{8}y+\frac{5}{4}\right)-3y=10
Whakakapia te -\frac{9y}{8}+\frac{5}{4} mō te x ki tērā atu whārite, -4x-3y=10.
\frac{9}{2}y-5-3y=10
Whakareatia -4 ki te -\frac{9y}{8}+\frac{5}{4}.
\frac{3}{2}y-5=10
Tāpiri \frac{9y}{2} ki te -3y.
\frac{3}{2}y=15
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{9}{8}\times 10+\frac{5}{4}
Whakaurua te 10 mō y ki x=-\frac{9}{8}y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-45+5}{4}
Whakareatia -\frac{9}{8} ki te 10.
x=-10
Tāpiri \frac{5}{4} ki te -\frac{45}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-10,y=10
Kua oti te pūnaha te whakatau.
-8x-9y=-10,-4x-3y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}&-\frac{-9}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}\\-\frac{-4}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}&-\frac{8}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{3}{4}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-10\right)-\frac{3}{4}\times 10\\-\frac{1}{3}\left(-10\right)+\frac{2}{3}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=-10,y=10
Tangohia ngā huānga poukapa x me y.
-8x-9y=-10,-4x-3y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\left(-8\right)x-4\left(-9\right)y=-4\left(-10\right),-8\left(-4\right)x-8\left(-3\right)y=-8\times 10
Kia ōrite ai a -8x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -8.
32x+36y=40,32x+24y=-80
Whakarūnātia.
32x-32x+36y-24y=40+80
Me tango 32x+24y=-80 mai i 32x+36y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36y-24y=40+80
Tāpiri 32x ki te -32x. Ka whakakore atu ngā kupu 32x me -32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
12y=40+80
Tāpiri 36y ki te -24y.
12y=120
Tāpiri 40 ki te 80.
y=10
Whakawehea ngā taha e rua ki te 12.
-4x-3\times 10=10
Whakaurua te 10 mō y ki -4x-3y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x-30=10
Whakareatia -3 ki te 10.
-4x=40
Me tāpiri 30 ki ngā taha e rua o te whārite.
x=-10
Whakawehea ngā taha e rua ki te -4.
x=-10,y=10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}