Whakaoti mō x, y
x=0
y=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-8x-6y=30,-6x+2y=-10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-8x-6y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-8x=6y+30
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=-\frac{1}{8}\left(6y+30\right)
Whakawehea ngā taha e rua ki te -8.
x=-\frac{3}{4}y-\frac{15}{4}
Whakareatia -\frac{1}{8} ki te 30+6y.
-6\left(-\frac{3}{4}y-\frac{15}{4}\right)+2y=-10
Whakakapia te \frac{-3y-15}{4} mō te x ki tērā atu whārite, -6x+2y=-10.
\frac{9}{2}y+\frac{45}{2}+2y=-10
Whakareatia -6 ki te \frac{-3y-15}{4}.
\frac{13}{2}y+\frac{45}{2}=-10
Tāpiri \frac{9y}{2} ki te 2y.
\frac{13}{2}y=-\frac{65}{2}
Me tango \frac{45}{2} mai i ngā taha e rua o te whārite.
y=-5
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\left(-5\right)-\frac{15}{4}
Whakaurua te -5 mō y ki x=-\frac{3}{4}y-\frac{15}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15-15}{4}
Whakareatia -\frac{3}{4} ki te -5.
x=0
Tāpiri -\frac{15}{4} ki te \frac{15}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-5
Kua oti te pūnaha te whakatau.
-8x-6y=30,-6x+2y=-10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}\\-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{8}{-8\times 2-\left(-6\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}&-\frac{3}{26}\\-\frac{3}{26}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}\times 30-\frac{3}{26}\left(-10\right)\\-\frac{3}{26}\times 30+\frac{2}{13}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-5
Tangohia ngā huānga poukapa x me y.
-8x-6y=30,-6x+2y=-10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-6\left(-8\right)x-6\left(-6\right)y=-6\times 30,-8\left(-6\right)x-8\times 2y=-8\left(-10\right)
Kia ōrite ai a -8x me -6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -8.
48x+36y=-180,48x-16y=80
Whakarūnātia.
48x-48x+36y+16y=-180-80
Me tango 48x-16y=80 mai i 48x+36y=-180 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36y+16y=-180-80
Tāpiri 48x ki te -48x. Ka whakakore atu ngā kupu 48x me -48x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
52y=-180-80
Tāpiri 36y ki te 16y.
52y=-260
Tāpiri -180 ki te -80.
y=-5
Whakawehea ngā taha e rua ki te 52.
-6x+2\left(-5\right)=-10
Whakaurua te -5 mō y ki -6x+2y=-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-6x-10=-10
Whakareatia 2 ki te -5.
-6x=0
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -6.
x=0,y=-5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}