Whakaoti mō x, y
x=9
y=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
-8x+7y=-9,-9x+7y=-18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-8x+7y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-8x=-7y-9
Me tango 7y mai i ngā taha e rua o te whārite.
x=-\frac{1}{8}\left(-7y-9\right)
Whakawehea ngā taha e rua ki te -8.
x=\frac{7}{8}y+\frac{9}{8}
Whakareatia -\frac{1}{8} ki te -7y-9.
-9\left(\frac{7}{8}y+\frac{9}{8}\right)+7y=-18
Whakakapia te \frac{7y+9}{8} mō te x ki tērā atu whārite, -9x+7y=-18.
-\frac{63}{8}y-\frac{81}{8}+7y=-18
Whakareatia -9 ki te \frac{7y+9}{8}.
-\frac{7}{8}y-\frac{81}{8}=-18
Tāpiri -\frac{63y}{8} ki te 7y.
-\frac{7}{8}y=-\frac{63}{8}
Me tāpiri \frac{81}{8} ki ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{8}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{8}\times 9+\frac{9}{8}
Whakaurua te 9 mō y ki x=\frac{7}{8}y+\frac{9}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{63+9}{8}
Whakareatia \frac{7}{8} ki te 9.
x=9
Tāpiri \frac{9}{8} ki te \frac{63}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=9,y=9
Kua oti te pūnaha te whakatau.
-8x+7y=-9,-9x+7y=-18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-8&7\\-9&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-8\times 7-7\left(-9\right)}&-\frac{7}{-8\times 7-7\left(-9\right)}\\-\frac{-9}{-8\times 7-7\left(-9\right)}&-\frac{8}{-8\times 7-7\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\\frac{9}{7}&-\frac{8}{7}\end{matrix}\right)\left(\begin{matrix}-9\\-18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9-\left(-18\right)\\\frac{9}{7}\left(-9\right)-\frac{8}{7}\left(-18\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\9\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=9
Tangohia ngā huānga poukapa x me y.
-8x+7y=-9,-9x+7y=-18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8x+9x+7y-7y=-9+18
Me tango -9x+7y=-18 mai i -8x+7y=-9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8x+9x=-9+18
Tāpiri 7y ki te -7y. Ka whakakore atu ngā kupu 7y me -7y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=-9+18
Tāpiri -8x ki te 9x.
x=9
Tāpiri -9 ki te 18.
-9\times 9+7y=-18
Whakaurua te 9 mō x ki -9x+7y=-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-81+7y=-18
Whakareatia -9 ki te 9.
7y=63
Me tāpiri 81 ki ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua ki te 7.
x=9,y=9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}