Whakaoti mō x, y
x=-2
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7x-8y=-2,-5x+8y=26
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-7x-8y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-7x=8y-2
Me tāpiri 8y ki ngā taha e rua o te whārite.
x=-\frac{1}{7}\left(8y-2\right)
Whakawehea ngā taha e rua ki te -7.
x=-\frac{8}{7}y+\frac{2}{7}
Whakareatia -\frac{1}{7} ki te 8y-2.
-5\left(-\frac{8}{7}y+\frac{2}{7}\right)+8y=26
Whakakapia te \frac{-8y+2}{7} mō te x ki tērā atu whārite, -5x+8y=26.
\frac{40}{7}y-\frac{10}{7}+8y=26
Whakareatia -5 ki te \frac{-8y+2}{7}.
\frac{96}{7}y-\frac{10}{7}=26
Tāpiri \frac{40y}{7} ki te 8y.
\frac{96}{7}y=\frac{192}{7}
Me tāpiri \frac{10}{7} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{96}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{8}{7}\times 2+\frac{2}{7}
Whakaurua te 2 mō y ki x=-\frac{8}{7}y+\frac{2}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-16+2}{7}
Whakareatia -\frac{8}{7} ki te 2.
x=-2
Tāpiri \frac{2}{7} ki te -\frac{16}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=2
Kua oti te pūnaha te whakatau.
-7x-8y=-2,-5x+8y=26
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\26\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-7\times 8-\left(-8\left(-5\right)\right)}&-\frac{-8}{-7\times 8-\left(-8\left(-5\right)\right)}\\-\frac{-5}{-7\times 8-\left(-8\left(-5\right)\right)}&-\frac{7}{-7\times 8-\left(-8\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\26\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{1}{12}\\-\frac{5}{96}&\frac{7}{96}\end{matrix}\right)\left(\begin{matrix}-2\\26\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-2\right)-\frac{1}{12}\times 26\\-\frac{5}{96}\left(-2\right)+\frac{7}{96}\times 26\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=2
Tangohia ngā huānga poukapa x me y.
-7x-8y=-2,-5x+8y=26
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\left(-7\right)x-5\left(-8\right)y=-5\left(-2\right),-7\left(-5\right)x-7\times 8y=-7\times 26
Kia ōrite ai a -7x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -7.
35x+40y=10,35x-56y=-182
Whakarūnātia.
35x-35x+40y+56y=10+182
Me tango 35x-56y=-182 mai i 35x+40y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40y+56y=10+182
Tāpiri 35x ki te -35x. Ka whakakore atu ngā kupu 35x me -35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
96y=10+182
Tāpiri 40y ki te 56y.
96y=192
Tāpiri 10 ki te 182.
y=2
Whakawehea ngā taha e rua ki te 96.
-5x+8\times 2=26
Whakaurua te 2 mō y ki -5x+8y=26. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x+16=26
Whakareatia 8 ki te 2.
-5x=10
Me tango 16 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -5.
x=-2,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}