Whakaoti mō x, y
x=4
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7x+2y=-24,5x-y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-7x+2y=-24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-7x=-2y-24
Me tango 2y mai i ngā taha e rua o te whārite.
x=-\frac{1}{7}\left(-2y-24\right)
Whakawehea ngā taha e rua ki te -7.
x=\frac{2}{7}y+\frac{24}{7}
Whakareatia -\frac{1}{7} ki te -2y-24.
5\left(\frac{2}{7}y+\frac{24}{7}\right)-y=18
Whakakapia te \frac{24+2y}{7} mō te x ki tērā atu whārite, 5x-y=18.
\frac{10}{7}y+\frac{120}{7}-y=18
Whakareatia 5 ki te \frac{24+2y}{7}.
\frac{3}{7}y+\frac{120}{7}=18
Tāpiri \frac{10y}{7} ki te -y.
\frac{3}{7}y=\frac{6}{7}
Me tango \frac{120}{7} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{7}\times 2+\frac{24}{7}
Whakaurua te 2 mō y ki x=\frac{2}{7}y+\frac{24}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4+24}{7}
Whakareatia \frac{2}{7} ki te 2.
x=4
Tāpiri \frac{24}{7} ki te \frac{4}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=2
Kua oti te pūnaha te whakatau.
-7x+2y=-24,5x-y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-7&2\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-7\left(-1\right)-2\times 5}&-\frac{2}{-7\left(-1\right)-2\times 5}\\-\frac{5}{-7\left(-1\right)-2\times 5}&-\frac{7}{-7\left(-1\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}-24\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{5}{3}&\frac{7}{3}\end{matrix}\right)\left(\begin{matrix}-24\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-24\right)+\frac{2}{3}\times 18\\\frac{5}{3}\left(-24\right)+\frac{7}{3}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
-7x+2y=-24,5x-y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\left(-7\right)x+5\times 2y=5\left(-24\right),-7\times 5x-7\left(-1\right)y=-7\times 18
Kia ōrite ai a -7x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -7.
-35x+10y=-120,-35x+7y=-126
Whakarūnātia.
-35x+35x+10y-7y=-120+126
Me tango -35x+7y=-126 mai i -35x+10y=-120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-7y=-120+126
Tāpiri -35x ki te 35x. Ka whakakore atu ngā kupu -35x me 35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=-120+126
Tāpiri 10y ki te -7y.
3y=6
Tāpiri -120 ki te 126.
y=2
Whakawehea ngā taha e rua ki te 3.
5x-2=18
Whakaurua te 2 mō y ki 5x-y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=20
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 5.
x=4,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}