Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-6x+y=-2,-3x-6y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-6x+y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-6x=-y-2
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{6}\left(-y-2\right)
Whakawehea ngā taha e rua ki te -6.
x=\frac{1}{6}y+\frac{1}{3}
Whakareatia -\frac{1}{6} ki te -y-2.
-3\left(\frac{1}{6}y+\frac{1}{3}\right)-6y=12
Whakakapia te \frac{y}{6}+\frac{1}{3} mō te x ki tērā atu whārite, -3x-6y=12.
-\frac{1}{2}y-1-6y=12
Whakareatia -3 ki te \frac{y}{6}+\frac{1}{3}.
-\frac{13}{2}y-1=12
Tāpiri -\frac{y}{2} ki te -6y.
-\frac{13}{2}y=13
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{6}\left(-2\right)+\frac{1}{3}
Whakaurua te -2 mō y ki x=\frac{1}{6}y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-1+1}{3}
Whakareatia \frac{1}{6} ki te -2.
x=0
Tāpiri \frac{1}{3} ki te -\frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-2
Kua oti te pūnaha te whakatau.
-6x+y=-2,-3x-6y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6\left(-6\right)-\left(-3\right)}&-\frac{1}{-6\left(-6\right)-\left(-3\right)}\\-\frac{-3}{-6\left(-6\right)-\left(-3\right)}&-\frac{6}{-6\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&-\frac{1}{39}\\\frac{1}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\left(-2\right)-\frac{1}{39}\times 12\\\frac{1}{13}\left(-2\right)-\frac{2}{13}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-2
Tangohia ngā huānga poukapa x me y.
-6x+y=-2,-3x-6y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\left(-6\right)x-3y=-3\left(-2\right),-6\left(-3\right)x-6\left(-6\right)y=-6\times 12
Kia ōrite ai a -6x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -6.
18x-3y=6,18x+36y=-72
Whakarūnātia.
18x-18x-3y-36y=6+72
Me tango 18x+36y=-72 mai i 18x-3y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-36y=6+72
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-39y=6+72
Tāpiri -3y ki te -36y.
-39y=78
Tāpiri 6 ki te 72.
y=-2
Whakawehea ngā taha e rua ki te -39.
-3x-6\left(-2\right)=12
Whakaurua te -2 mō y ki -3x-6y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+12=12
Whakareatia -6 ki te -2.
-3x=0
Me tango 12 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -3.
x=0,y=-2
Kua oti te pūnaha te whakatau.