Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-6x+6y=-6,2x-y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-6x+6y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-6x=-6y-6
Me tango 6y mai i ngā taha e rua o te whārite.
x=-\frac{1}{6}\left(-6y-6\right)
Whakawehea ngā taha e rua ki te -6.
x=y+1
Whakareatia -\frac{1}{6} ki te -6y-6.
2\left(y+1\right)-y=-4
Whakakapia te y+1 mō te x ki tērā atu whārite, 2x-y=-4.
2y+2-y=-4
Whakareatia 2 ki te y+1.
y+2=-4
Tāpiri 2y ki te -y.
y=-6
Me tango 2 mai i ngā taha e rua o te whārite.
x=-6+1
Whakaurua te -6 mō y ki x=y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5
Tāpiri 1 ki te -6.
x=-5,y=-6
Kua oti te pūnaha te whakatau.
-6x+6y=-6,2x-y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-6&6\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-6&6\\2&-1\end{matrix}\right))\left(\begin{matrix}-6&6\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&6\\2&-1\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-6&6\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&6\\2&-1\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&6\\2&-1\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-6\left(-1\right)-6\times 2}&-\frac{6}{-6\left(-1\right)-6\times 2}\\-\frac{2}{-6\left(-1\right)-6\times 2}&-\frac{6}{-6\left(-1\right)-6\times 2}\end{matrix}\right)\left(\begin{matrix}-6\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&1\\\frac{1}{3}&1\end{matrix}\right)\left(\begin{matrix}-6\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-6\right)-4\\\frac{1}{3}\left(-6\right)-4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=-6
Tangohia ngā huānga poukapa x me y.
-6x+6y=-6,2x-y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-6\right)x+2\times 6y=2\left(-6\right),-6\times 2x-6\left(-1\right)y=-6\left(-4\right)
Kia ōrite ai a -6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -6.
-12x+12y=-12,-12x+6y=24
Whakarūnātia.
-12x+12x+12y-6y=-12-24
Me tango -12x+6y=24 mai i -12x+12y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-6y=-12-24
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=-12-24
Tāpiri 12y ki te -6y.
6y=-36
Tāpiri -12 ki te -24.
y=-6
Whakawehea ngā taha e rua ki te 6.
2x-\left(-6\right)=-4
Whakaurua te -6 mō y ki 2x-y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=-10
Me tango 6 mai i ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te 2.
x=-5,y=-6
Kua oti te pūnaha te whakatau.