Whakaoti mō x, y
x=-1
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x+5y=1,6x+4y=-10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-6x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-6x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\frac{1}{6}\left(-5y+1\right)
Whakawehea ngā taha e rua ki te -6.
x=\frac{5}{6}y-\frac{1}{6}
Whakareatia -\frac{1}{6} ki te -5y+1.
6\left(\frac{5}{6}y-\frac{1}{6}\right)+4y=-10
Whakakapia te \frac{5y-1}{6} mō te x ki tērā atu whārite, 6x+4y=-10.
5y-1+4y=-10
Whakareatia 6 ki te \frac{5y-1}{6}.
9y-1=-10
Tāpiri 5y ki te 4y.
9y=-9
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 9.
x=\frac{5}{6}\left(-1\right)-\frac{1}{6}
Whakaurua te -1 mō y ki x=\frac{5}{6}y-\frac{1}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5-1}{6}
Whakareatia \frac{5}{6} ki te -1.
x=-1
Tāpiri -\frac{1}{6} ki te -\frac{5}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-1
Kua oti te pūnaha te whakatau.
-6x+5y=1,6x+4y=-10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-6&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}-6&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-6&5\\6&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&5\\6&4\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-6\times 4-5\times 6}&-\frac{5}{-6\times 4-5\times 6}\\-\frac{6}{-6\times 4-5\times 6}&-\frac{6}{-6\times 4-5\times 6}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{27}&\frac{5}{54}\\\frac{1}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{27}+\frac{5}{54}\left(-10\right)\\\frac{1}{9}+\frac{1}{9}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-1
Tangohia ngā huānga poukapa x me y.
-6x+5y=1,6x+4y=-10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\left(-6\right)x+6\times 5y=6,-6\times 6x-6\times 4y=-6\left(-10\right)
Kia ōrite ai a -6x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -6.
-36x+30y=6,-36x-24y=60
Whakarūnātia.
-36x+36x+30y+24y=6-60
Me tango -36x-24y=60 mai i -36x+30y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30y+24y=6-60
Tāpiri -36x ki te 36x. Ka whakakore atu ngā kupu -36x me 36x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
54y=6-60
Tāpiri 30y ki te 24y.
54y=-54
Tāpiri 6 ki te -60.
y=-1
Whakawehea ngā taha e rua ki te 54.
6x+4\left(-1\right)=-10
Whakaurua te -1 mō y ki 6x+4y=-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-4=-10
Whakareatia 4 ki te -1.
6x=-6
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 6.
x=-1,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}