Whakaoti mō x, y
x=1
y=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x+2y=6,4x-4y=-20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-6x+2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-6x=-2y+6
Me tango 2y mai i ngā taha e rua o te whārite.
x=-\frac{1}{6}\left(-2y+6\right)
Whakawehea ngā taha e rua ki te -6.
x=\frac{1}{3}y-1
Whakareatia -\frac{1}{6} ki te -2y+6.
4\left(\frac{1}{3}y-1\right)-4y=-20
Whakakapia te \frac{y}{3}-1 mō te x ki tērā atu whārite, 4x-4y=-20.
\frac{4}{3}y-4-4y=-20
Whakareatia 4 ki te \frac{y}{3}-1.
-\frac{8}{3}y-4=-20
Tāpiri \frac{4y}{3} ki te -4y.
-\frac{8}{3}y=-16
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 6-1
Whakaurua te 6 mō y ki x=\frac{1}{3}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2-1
Whakareatia \frac{1}{3} ki te 6.
x=1
Tāpiri -1 ki te 2.
x=1,y=6
Kua oti te pūnaha te whakatau.
-6x+2y=6,4x-4y=-20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-6&2\\4&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-6\left(-4\right)-2\times 4}&-\frac{2}{-6\left(-4\right)-2\times 4}\\-\frac{4}{-6\left(-4\right)-2\times 4}&-\frac{6}{-6\left(-4\right)-2\times 4}\end{matrix}\right)\left(\begin{matrix}6\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&-\frac{1}{8}\\-\frac{1}{4}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 6-\frac{1}{8}\left(-20\right)\\-\frac{1}{4}\times 6-\frac{3}{8}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=6
Tangohia ngā huānga poukapa x me y.
-6x+2y=6,4x-4y=-20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-6\right)x+4\times 2y=4\times 6,-6\times 4x-6\left(-4\right)y=-6\left(-20\right)
Kia ōrite ai a -6x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -6.
-24x+8y=24,-24x+24y=120
Whakarūnātia.
-24x+24x+8y-24y=24-120
Me tango -24x+24y=120 mai i -24x+8y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-24y=24-120
Tāpiri -24x ki te 24x. Ka whakakore atu ngā kupu -24x me 24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=24-120
Tāpiri 8y ki te -24y.
-16y=-96
Tāpiri 24 ki te -120.
y=6
Whakawehea ngā taha e rua ki te -16.
4x-4\times 6=-20
Whakaurua te 6 mō y ki 4x-4y=-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-24=-20
Whakareatia -4 ki te 6.
4x=4
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 4.
x=1,y=6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}