Whakaoti mō y, x
x=4
y=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5y+8x=-18,5y+2x=58
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5y+8x=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
-5y=-8x-18
Me tango 8x mai i ngā taha e rua o te whārite.
y=-\frac{1}{5}\left(-8x-18\right)
Whakawehea ngā taha e rua ki te -5.
y=\frac{8}{5}x+\frac{18}{5}
Whakareatia -\frac{1}{5} ki te -8x-18.
5\left(\frac{8}{5}x+\frac{18}{5}\right)+2x=58
Whakakapia te \frac{8x+18}{5} mō te y ki tērā atu whārite, 5y+2x=58.
8x+18+2x=58
Whakareatia 5 ki te \frac{8x+18}{5}.
10x+18=58
Tāpiri 8x ki te 2x.
10x=40
Me tango 18 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 10.
y=\frac{8}{5}\times 4+\frac{18}{5}
Whakaurua te 4 mō x ki y=\frac{8}{5}x+\frac{18}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{32+18}{5}
Whakareatia \frac{8}{5} ki te 4.
y=10
Tāpiri \frac{18}{5} ki te \frac{32}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=10,x=4
Kua oti te pūnaha te whakatau.
-5y+8x=-18,5y+2x=58
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\58\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&8\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-8\times 5}&-\frac{8}{-5\times 2-8\times 5}\\-\frac{5}{-5\times 2-8\times 5}&-\frac{5}{-5\times 2-8\times 5}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}&\frac{4}{25}\\\frac{1}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}\left(-18\right)+\frac{4}{25}\times 58\\\frac{1}{10}\left(-18\right)+\frac{1}{10}\times 58\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}10\\4\end{matrix}\right)
Mahia ngā tātaitanga.
y=10,x=4
Tangohia ngā huānga poukapa y me x.
-5y+8x=-18,5y+2x=58
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\left(-5\right)y+5\times 8x=5\left(-18\right),-5\times 5y-5\times 2x=-5\times 58
Kia ōrite ai a -5y me 5y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
-25y+40x=-90,-25y-10x=-290
Whakarūnātia.
-25y+25y+40x+10x=-90+290
Me tango -25y-10x=-290 mai i -25y+40x=-90 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40x+10x=-90+290
Tāpiri -25y ki te 25y. Ka whakakore atu ngā kupu -25y me 25y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
50x=-90+290
Tāpiri 40x ki te 10x.
50x=200
Tāpiri -90 ki te 290.
x=4
Whakawehea ngā taha e rua ki te 50.
5y+2\times 4=58
Whakaurua te 4 mō x ki 5y+2x=58. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
5y+8=58
Whakareatia 2 ki te 4.
5y=50
Me tango 8 mai i ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua ki te 5.
y=10,x=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}