Whakaoti mō x, y
x=0
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x-8y=8,-5x+6y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x-8y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=8y+8
Me tāpiri 8y ki ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(8y+8\right)
Whakawehea ngā taha e rua ki te -5.
x=-\frac{8}{5}y-\frac{8}{5}
Whakareatia -\frac{1}{5} ki te 8+8y.
-5\left(-\frac{8}{5}y-\frac{8}{5}\right)+6y=-6
Whakakapia te \frac{-8y-8}{5} mō te x ki tērā atu whārite, -5x+6y=-6.
8y+8+6y=-6
Whakareatia -5 ki te \frac{-8y-8}{5}.
14y+8=-6
Tāpiri 8y ki te 6y.
14y=-14
Me tango 8 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 14.
x=-\frac{8}{5}\left(-1\right)-\frac{8}{5}
Whakaurua te -1 mō y ki x=-\frac{8}{5}y-\frac{8}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8-8}{5}
Whakareatia -\frac{8}{5} ki te -1.
x=0
Tāpiri -\frac{8}{5} ki te \frac{8}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-1
Kua oti te pūnaha te whakatau.
-5x-8y=8,-5x+6y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-5\times 6-\left(-8\left(-5\right)\right)}&-\frac{-8}{-5\times 6-\left(-8\left(-5\right)\right)}\\-\frac{-5}{-5\times 6-\left(-8\left(-5\right)\right)}&-\frac{5}{-5\times 6-\left(-8\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{35}&-\frac{4}{35}\\-\frac{1}{14}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}8\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{35}\times 8-\frac{4}{35}\left(-6\right)\\-\frac{1}{14}\times 8+\frac{1}{14}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-1
Tangohia ngā huānga poukapa x me y.
-5x-8y=8,-5x+6y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5x+5x-8y-6y=8+6
Me tango -5x+6y=-6 mai i -5x-8y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-6y=8+6
Tāpiri -5x ki te 5x. Ka whakakore atu ngā kupu -5x me 5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y=8+6
Tāpiri -8y ki te -6y.
-14y=14
Tāpiri 8 ki te 6.
y=-1
Whakawehea ngā taha e rua ki te -14.
-5x+6\left(-1\right)=-6
Whakaurua te -1 mō y ki -5x+6y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x-6=-6
Whakareatia 6 ki te -1.
-5x=0
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -5.
x=0,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}