Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x-7y=-18,7x+9y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x-7y=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=7y-18
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(7y-18\right)
Whakawehea ngā taha e rua ki te -5.
x=-\frac{7}{5}y+\frac{18}{5}
Whakareatia -\frac{1}{5} ki te 7y-18.
7\left(-\frac{7}{5}y+\frac{18}{5}\right)+9y=18
Whakakapia te \frac{-7y+18}{5} mō te x ki tērā atu whārite, 7x+9y=18.
-\frac{49}{5}y+\frac{126}{5}+9y=18
Whakareatia 7 ki te \frac{-7y+18}{5}.
-\frac{4}{5}y+\frac{126}{5}=18
Tāpiri -\frac{49y}{5} ki te 9y.
-\frac{4}{5}y=-\frac{36}{5}
Me tango \frac{126}{5} mai i ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua o te whārite ki te -\frac{4}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{5}\times 9+\frac{18}{5}
Whakaurua te 9 mō y ki x=-\frac{7}{5}y+\frac{18}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-63+18}{5}
Whakareatia -\frac{7}{5} ki te 9.
x=-9
Tāpiri \frac{18}{5} ki te -\frac{63}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-9,y=9
Kua oti te pūnaha te whakatau.
-5x-7y=-18,7x+9y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&-7\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&-7\\7&9\end{matrix}\right))\left(\begin{matrix}-5&-7\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-7\\7&9\end{matrix}\right))\left(\begin{matrix}-18\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&-7\\7&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-7\\7&9\end{matrix}\right))\left(\begin{matrix}-18\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-7\\7&9\end{matrix}\right))\left(\begin{matrix}-18\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{-5\times 9-\left(-7\times 7\right)}&-\frac{-7}{-5\times 9-\left(-7\times 7\right)}\\-\frac{7}{-5\times 9-\left(-7\times 7\right)}&-\frac{5}{-5\times 9-\left(-7\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-18\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}&\frac{7}{4}\\-\frac{7}{4}&-\frac{5}{4}\end{matrix}\right)\left(\begin{matrix}-18\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\left(-18\right)+\frac{7}{4}\times 18\\-\frac{7}{4}\left(-18\right)-\frac{5}{4}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\9\end{matrix}\right)
Mahia ngā tātaitanga.
x=-9,y=9
Tangohia ngā huānga poukapa x me y.
-5x-7y=-18,7x+9y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\left(-5\right)x+7\left(-7\right)y=7\left(-18\right),-5\times 7x-5\times 9y=-5\times 18
Kia ōrite ai a -5x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
-35x-49y=-126,-35x-45y=-90
Whakarūnātia.
-35x+35x-49y+45y=-126+90
Me tango -35x-45y=-90 mai i -35x-49y=-126 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-49y+45y=-126+90
Tāpiri -35x ki te 35x. Ka whakakore atu ngā kupu -35x me 35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=-126+90
Tāpiri -49y ki te 45y.
-4y=-36
Tāpiri -126 ki te 90.
y=9
Whakawehea ngā taha e rua ki te -4.
7x+9\times 9=18
Whakaurua te 9 mō y ki 7x+9y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+81=18
Whakareatia 9 ki te 9.
7x=-63
Me tango 81 mai i ngā taha e rua o te whārite.
x=-9
Whakawehea ngā taha e rua ki te 7.
x=-9,y=9
Kua oti te pūnaha te whakatau.