Whakaoti mō x, y
x=0
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x-3y-9=0,4x-18y-54=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x-3y-9=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x-3y=9
Me tāpiri 9 ki ngā taha e rua o te whārite.
-5x=3y+9
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(3y+9\right)
Whakawehea ngā taha e rua ki te -5.
x=-\frac{3}{5}y-\frac{9}{5}
Whakareatia -\frac{1}{5} ki te 9+3y.
4\left(-\frac{3}{5}y-\frac{9}{5}\right)-18y-54=0
Whakakapia te \frac{-3y-9}{5} mō te x ki tērā atu whārite, 4x-18y-54=0.
-\frac{12}{5}y-\frac{36}{5}-18y-54=0
Whakareatia 4 ki te \frac{-3y-9}{5}.
-\frac{102}{5}y-\frac{36}{5}-54=0
Tāpiri -\frac{12y}{5} ki te -18y.
-\frac{102}{5}y-\frac{306}{5}=0
Tāpiri -\frac{36}{5} ki te -54.
-\frac{102}{5}y=\frac{306}{5}
Me tāpiri \frac{306}{5} ki ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{102}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{5}\left(-3\right)-\frac{9}{5}
Whakaurua te -3 mō y ki x=-\frac{3}{5}y-\frac{9}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9-9}{5}
Whakareatia -\frac{3}{5} ki te -3.
x=0
Tāpiri -\frac{9}{5} ki te \frac{9}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-3
Kua oti te pūnaha te whakatau.
-5x-3y-9=0,4x-18y-54=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\54\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}9\\54\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}9\\54\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-3\\4&-18\end{matrix}\right))\left(\begin{matrix}9\\54\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-5\left(-18\right)-\left(-3\times 4\right)}&-\frac{-3}{-5\left(-18\right)-\left(-3\times 4\right)}\\-\frac{4}{-5\left(-18\right)-\left(-3\times 4\right)}&-\frac{5}{-5\left(-18\right)-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\54\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{17}&\frac{1}{34}\\-\frac{2}{51}&-\frac{5}{102}\end{matrix}\right)\left(\begin{matrix}9\\54\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{17}\times 9+\frac{1}{34}\times 54\\-\frac{2}{51}\times 9-\frac{5}{102}\times 54\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-3
Tangohia ngā huānga poukapa x me y.
-5x-3y-9=0,4x-18y-54=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-5\right)x+4\left(-3\right)y+4\left(-9\right)=0,-5\times 4x-5\left(-18\right)y-5\left(-54\right)=0
Kia ōrite ai a -5x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
-20x-12y-36=0,-20x+90y+270=0
Whakarūnātia.
-20x+20x-12y-90y-36-270=0
Me tango -20x+90y+270=0 mai i -20x-12y-36=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-90y-36-270=0
Tāpiri -20x ki te 20x. Ka whakakore atu ngā kupu -20x me 20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-102y-36-270=0
Tāpiri -12y ki te -90y.
-102y-306=0
Tāpiri -36 ki te -270.
-102y=306
Me tāpiri 306 ki ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te -102.
4x-18\left(-3\right)-54=0
Whakaurua te -3 mō y ki 4x-18y-54=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+54-54=0
Whakareatia -18 ki te -3.
4x=0
Tāpiri 54 ki te -54.
x=0
Whakawehea ngā taha e rua ki te 4.
x=0,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}