Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x+y=-3,3x-8y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-y-3
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-y-3\right)
Whakawehea ngā taha e rua ki te -5.
x=\frac{1}{5}y+\frac{3}{5}
Whakareatia -\frac{1}{5} ki te -y-3.
3\left(\frac{1}{5}y+\frac{3}{5}\right)-8y=24
Whakakapia te \frac{3+y}{5} mō te x ki tērā atu whārite, 3x-8y=24.
\frac{3}{5}y+\frac{9}{5}-8y=24
Whakareatia 3 ki te \frac{3+y}{5}.
-\frac{37}{5}y+\frac{9}{5}=24
Tāpiri \frac{3y}{5} ki te -8y.
-\frac{37}{5}y=\frac{111}{5}
Me tango \frac{9}{5} mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{37}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\left(-3\right)+\frac{3}{5}
Whakaurua te -3 mō y ki x=\frac{1}{5}y+\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+3}{5}
Whakareatia \frac{1}{5} ki te -3.
x=0
Tāpiri \frac{3}{5} ki te -\frac{3}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-3
Kua oti te pūnaha te whakatau.
-5x+y=-3,3x-8y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&1\\3&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&1\\3&-8\end{matrix}\right))\left(\begin{matrix}-5&1\\3&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\3&-8\end{matrix}\right))\left(\begin{matrix}-3\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&1\\3&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\3&-8\end{matrix}\right))\left(\begin{matrix}-3\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\3&-8\end{matrix}\right))\left(\begin{matrix}-3\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-5\left(-8\right)-3}&-\frac{1}{-5\left(-8\right)-3}\\-\frac{3}{-5\left(-8\right)-3}&-\frac{5}{-5\left(-8\right)-3}\end{matrix}\right)\left(\begin{matrix}-3\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{37}&-\frac{1}{37}\\-\frac{3}{37}&-\frac{5}{37}\end{matrix}\right)\left(\begin{matrix}-3\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{37}\left(-3\right)-\frac{1}{37}\times 24\\-\frac{3}{37}\left(-3\right)-\frac{5}{37}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-3
Tangohia ngā huānga poukapa x me y.
-5x+y=-3,3x-8y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-5\right)x+3y=3\left(-3\right),-5\times 3x-5\left(-8\right)y=-5\times 24
Kia ōrite ai a -5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
-15x+3y=-9,-15x+40y=-120
Whakarūnātia.
-15x+15x+3y-40y=-9+120
Me tango -15x+40y=-120 mai i -15x+3y=-9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-40y=-9+120
Tāpiri -15x ki te 15x. Ka whakakore atu ngā kupu -15x me 15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-37y=-9+120
Tāpiri 3y ki te -40y.
-37y=111
Tāpiri -9 ki te 120.
y=-3
Whakawehea ngā taha e rua ki te -37.
3x-8\left(-3\right)=24
Whakaurua te -3 mō y ki 3x-8y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+24=24
Whakareatia -8 ki te -3.
3x=0
Me tango 24 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=-3
Kua oti te pūnaha te whakatau.