Whakaoti mō x, y
x=8
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+8y=0,-7x-8y=-96
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+8y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-8y
Me tango 8y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-8\right)y
Whakawehea ngā taha e rua ki te -5.
x=\frac{8}{5}y
Whakareatia -\frac{1}{5} ki te -8y.
-7\times \frac{8}{5}y-8y=-96
Whakakapia te \frac{8y}{5} mō te x ki tērā atu whārite, -7x-8y=-96.
-\frac{56}{5}y-8y=-96
Whakareatia -7 ki te \frac{8y}{5}.
-\frac{96}{5}y=-96
Tāpiri -\frac{56y}{5} ki te -8y.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{96}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{8}{5}\times 5
Whakaurua te 5 mō y ki x=\frac{8}{5}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8
Whakareatia \frac{8}{5} ki te 5.
x=8,y=5
Kua oti te pūnaha te whakatau.
-5x+8y=0,-7x-8y=-96
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-96\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-5\left(-8\right)-8\left(-7\right)}&-\frac{8}{-5\left(-8\right)-8\left(-7\right)}\\-\frac{-7}{-5\left(-8\right)-8\left(-7\right)}&-\frac{5}{-5\left(-8\right)-8\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{1}{12}\\\frac{7}{96}&-\frac{5}{96}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-96\right)\\-\frac{5}{96}\left(-96\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=8,y=5
Tangohia ngā huānga poukapa x me y.
-5x+8y=0,-7x-8y=-96
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\left(-5\right)x-7\times 8y=0,-5\left(-7\right)x-5\left(-8\right)y=-5\left(-96\right)
Kia ōrite ai a -5x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
35x-56y=0,35x+40y=480
Whakarūnātia.
35x-35x-56y-40y=-480
Me tango 35x+40y=480 mai i 35x-56y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-56y-40y=-480
Tāpiri 35x ki te -35x. Ka whakakore atu ngā kupu 35x me -35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-96y=-480
Tāpiri -56y ki te -40y.
y=5
Whakawehea ngā taha e rua ki te -96.
-7x-8\times 5=-96
Whakaurua te 5 mō y ki -7x-8y=-96. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x-40=-96
Whakareatia -8 ki te 5.
-7x=-56
Me tāpiri 40 ki ngā taha e rua o te whārite.
x=8
Whakawehea ngā taha e rua ki te -7.
x=8,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}