Whakaoti mō x, y
x=-2
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+5y=-10,-2x+5y=-16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+5y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-5y-10
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-5y-10\right)
Whakawehea ngā taha e rua ki te -5.
x=y+2
Whakareatia -\frac{1}{5} ki te -5y-10.
-2\left(y+2\right)+5y=-16
Whakakapia te y+2 mō te x ki tērā atu whārite, -2x+5y=-16.
-2y-4+5y=-16
Whakareatia -2 ki te y+2.
3y-4=-16
Tāpiri -2y ki te 5y.
3y=-12
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te 3.
x=-4+2
Whakaurua te -4 mō y ki x=y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Tāpiri 2 ki te -4.
x=-2,y=-4
Kua oti te pūnaha te whakatau.
-5x+5y=-10,-2x+5y=-16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&5\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&5\\-2&5\end{matrix}\right))\left(\begin{matrix}-5&5\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&5\\-2&5\end{matrix}\right))\left(\begin{matrix}-10\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&5\\-2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&5\\-2&5\end{matrix}\right))\left(\begin{matrix}-10\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&5\\-2&5\end{matrix}\right))\left(\begin{matrix}-10\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-5\times 5-5\left(-2\right)}&-\frac{5}{-5\times 5-5\left(-2\right)}\\-\frac{-2}{-5\times 5-5\left(-2\right)}&-\frac{5}{-5\times 5-5\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-10\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\-\frac{2}{15}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-10\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-10\right)+\frac{1}{3}\left(-16\right)\\-\frac{2}{15}\left(-10\right)+\frac{1}{3}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=-4
Tangohia ngā huānga poukapa x me y.
-5x+5y=-10,-2x+5y=-16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5x+2x+5y-5y=-10+16
Me tango -2x+5y=-16 mai i -5x+5y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5x+2x=-10+16
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3x=-10+16
Tāpiri -5x ki te 2x.
-3x=6
Tāpiri -10 ki te 16.
x=-2
Whakawehea ngā taha e rua ki te -3.
-2\left(-2\right)+5y=-16
Whakaurua te -2 mō x ki -2x+5y=-16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
4+5y=-16
Whakareatia -2 ki te -2.
5y=-20
Me tango 4 mai i ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te 5.
x=-2,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}