Whakaoti mō x, y
x=3
y=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+3y=3,4x+3y=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+3y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-3y+3
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-3y+3\right)
Whakawehea ngā taha e rua ki te -5.
x=\frac{3}{5}y-\frac{3}{5}
Whakareatia -\frac{1}{5} ki te -3y+3.
4\left(\frac{3}{5}y-\frac{3}{5}\right)+3y=30
Whakakapia te \frac{-3+3y}{5} mō te x ki tērā atu whārite, 4x+3y=30.
\frac{12}{5}y-\frac{12}{5}+3y=30
Whakareatia 4 ki te \frac{-3+3y}{5}.
\frac{27}{5}y-\frac{12}{5}=30
Tāpiri \frac{12y}{5} ki te 3y.
\frac{27}{5}y=\frac{162}{5}
Me tāpiri \frac{12}{5} ki ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua o te whārite ki te \frac{27}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\times 6-\frac{3}{5}
Whakaurua te 6 mō y ki x=\frac{3}{5}y-\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{18-3}{5}
Whakareatia \frac{3}{5} ki te 6.
x=3
Tāpiri -\frac{3}{5} ki te \frac{18}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=6
Kua oti te pūnaha te whakatau.
-5x+3y=3,4x+3y=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}-5&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}3\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&3\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}3\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}3\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-5\times 3-3\times 4}&-\frac{3}{-5\times 3-3\times 4}\\-\frac{4}{-5\times 3-3\times 4}&-\frac{5}{-5\times 3-3\times 4}\end{matrix}\right)\left(\begin{matrix}3\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}&\frac{1}{9}\\\frac{4}{27}&\frac{5}{27}\end{matrix}\right)\left(\begin{matrix}3\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}\times 3+\frac{1}{9}\times 30\\\frac{4}{27}\times 3+\frac{5}{27}\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=6
Tangohia ngā huānga poukapa x me y.
-5x+3y=3,4x+3y=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5x-4x+3y-3y=3-30
Me tango 4x+3y=30 mai i -5x+3y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5x-4x=3-30
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-9x=3-30
Tāpiri -5x ki te -4x.
-9x=-27
Tāpiri 3 ki te -30.
x=3
Whakawehea ngā taha e rua ki te -9.
4\times 3+3y=30
Whakaurua te 3 mō x ki 4x+3y=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
12+3y=30
Whakareatia 4 ki te 3.
3y=18
Me tango 12 mai i ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua ki te 3.
x=3,y=6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}