Whakaoti mō x, y
x=4
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+13y=-7,5x+4y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+13y=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-13y-7
Me tango 13y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-13y-7\right)
Whakawehea ngā taha e rua ki te -5.
x=\frac{13}{5}y+\frac{7}{5}
Whakareatia -\frac{1}{5} ki te -13y-7.
5\left(\frac{13}{5}y+\frac{7}{5}\right)+4y=24
Whakakapia te \frac{13y+7}{5} mō te x ki tērā atu whārite, 5x+4y=24.
13y+7+4y=24
Whakareatia 5 ki te \frac{13y+7}{5}.
17y+7=24
Tāpiri 13y ki te 4y.
17y=17
Me tango 7 mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 17.
x=\frac{13+7}{5}
Whakaurua te 1 mō y ki x=\frac{13}{5}y+\frac{7}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Tāpiri \frac{7}{5} ki te \frac{13}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=1
Kua oti te pūnaha te whakatau.
-5x+13y=-7,5x+4y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&13\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-5&13\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&13\\5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&13\\5&4\end{matrix}\right))\left(\begin{matrix}-7\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-5\times 4-13\times 5}&-\frac{13}{-5\times 4-13\times 5}\\-\frac{5}{-5\times 4-13\times 5}&-\frac{5}{-5\times 4-13\times 5}\end{matrix}\right)\left(\begin{matrix}-7\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{85}&\frac{13}{85}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-7\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{85}\left(-7\right)+\frac{13}{85}\times 24\\\frac{1}{17}\left(-7\right)+\frac{1}{17}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=1
Tangohia ngā huānga poukapa x me y.
-5x+13y=-7,5x+4y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\left(-5\right)x+5\times 13y=5\left(-7\right),-5\times 5x-5\times 4y=-5\times 24
Kia ōrite ai a -5x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
-25x+65y=-35,-25x-20y=-120
Whakarūnātia.
-25x+25x+65y+20y=-35+120
Me tango -25x-20y=-120 mai i -25x+65y=-35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
65y+20y=-35+120
Tāpiri -25x ki te 25x. Ka whakakore atu ngā kupu -25x me 25x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
85y=-35+120
Tāpiri 65y ki te 20y.
85y=85
Tāpiri -35 ki te 120.
y=1
Whakawehea ngā taha e rua ki te 85.
5x+4=24
Whakaurua te 1 mō y ki 5x+4y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=20
Me tango 4 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 5.
x=4,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}