Whakaoti mō x, y
x = -\frac{20}{17} = -1\frac{3}{17} \approx -1.176470588
y = -\frac{35}{34} = -1\frac{1}{34} \approx -1.029411765
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+5y+3y=2x
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-y.
-5x+8y=2x
Pahekotia te 5y me 3y, ka 8y.
-5x+8y-2x=0
Tangohia te 2x mai i ngā taha e rua.
-7x+8y=0
Pahekotia te -5x me -2x, ka -7x.
2y-6x-7=-2
Whakaarohia te whārite tuarua. Hei kimi i te tauaro o 6x+7, kimihia te tauaro o ia taurangi.
2y-6x=-2+7
Me tāpiri te 7 ki ngā taha e rua.
2y-6x=5
Tāpirihia te -2 ki te 7, ka 5.
-7x+8y=0,-6x+2y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-7x+8y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-7x=-8y
Me tango 8y mai i ngā taha e rua o te whārite.
x=-\frac{1}{7}\left(-8\right)y
Whakawehea ngā taha e rua ki te -7.
x=\frac{8}{7}y
Whakareatia -\frac{1}{7} ki te -8y.
-6\times \frac{8}{7}y+2y=5
Whakakapia te \frac{8y}{7} mō te x ki tērā atu whārite, -6x+2y=5.
-\frac{48}{7}y+2y=5
Whakareatia -6 ki te \frac{8y}{7}.
-\frac{34}{7}y=5
Tāpiri -\frac{48y}{7} ki te 2y.
y=-\frac{35}{34}
Whakawehea ngā taha e rua o te whārite ki te -\frac{34}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{8}{7}\left(-\frac{35}{34}\right)
Whakaurua te -\frac{35}{34} mō y ki x=\frac{8}{7}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{20}{17}
Whakareatia \frac{8}{7} ki te -\frac{35}{34} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{20}{17},y=-\frac{35}{34}
Kua oti te pūnaha te whakatau.
-5x+5y+3y=2x
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-y.
-5x+8y=2x
Pahekotia te 5y me 3y, ka 8y.
-5x+8y-2x=0
Tangohia te 2x mai i ngā taha e rua.
-7x+8y=0
Pahekotia te -5x me -2x, ka -7x.
2y-6x-7=-2
Whakaarohia te whārite tuarua. Hei kimi i te tauaro o 6x+7, kimihia te tauaro o ia taurangi.
2y-6x=-2+7
Me tāpiri te 7 ki ngā taha e rua.
2y-6x=5
Tāpirihia te -2 ki te 7, ka 5.
-7x+8y=0,-6x+2y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-7&8\\-6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-7\times 2-8\left(-6\right)}&-\frac{8}{-7\times 2-8\left(-6\right)}\\-\frac{-6}{-7\times 2-8\left(-6\right)}&-\frac{7}{-7\times 2-8\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&-\frac{4}{17}\\\frac{3}{17}&-\frac{7}{34}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{17}\times 5\\-\frac{7}{34}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{17}\\-\frac{35}{34}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{20}{17},y=-\frac{35}{34}
Tangohia ngā huānga poukapa x me y.
-5x+5y+3y=2x
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-y.
-5x+8y=2x
Pahekotia te 5y me 3y, ka 8y.
-5x+8y-2x=0
Tangohia te 2x mai i ngā taha e rua.
-7x+8y=0
Pahekotia te -5x me -2x, ka -7x.
2y-6x-7=-2
Whakaarohia te whārite tuarua. Hei kimi i te tauaro o 6x+7, kimihia te tauaro o ia taurangi.
2y-6x=-2+7
Me tāpiri te 7 ki ngā taha e rua.
2y-6x=5
Tāpirihia te -2 ki te 7, ka 5.
-7x+8y=0,-6x+2y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-6\left(-7\right)x-6\times 8y=0,-7\left(-6\right)x-7\times 2y=-7\times 5
Kia ōrite ai a -7x me -6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -7.
42x-48y=0,42x-14y=-35
Whakarūnātia.
42x-42x-48y+14y=35
Me tango 42x-14y=-35 mai i 42x-48y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-48y+14y=35
Tāpiri 42x ki te -42x. Ka whakakore atu ngā kupu 42x me -42x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-34y=35
Tāpiri -48y ki te 14y.
y=-\frac{35}{34}
Whakawehea ngā taha e rua ki te -34.
-6x+2\left(-\frac{35}{34}\right)=5
Whakaurua te -\frac{35}{34} mō y ki -6x+2y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-6x-\frac{35}{17}=5
Whakareatia 2 ki te -\frac{35}{34}.
-6x=\frac{120}{17}
Me tāpiri \frac{35}{17} ki ngā taha e rua o te whārite.
x=-\frac{20}{17}
Whakawehea ngā taha e rua ki te -6.
x=-\frac{20}{17},y=-\frac{35}{34}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}