Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-4x-10y=20,8x+10y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x-10y=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=10y+20
Me tāpiri 10y ki ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(10y+20\right)
Whakawehea ngā taha e rua ki te -4.
x=-\frac{5}{2}y-5
Whakareatia -\frac{1}{4} ki te 20+10y.
8\left(-\frac{5}{2}y-5\right)+10y=20
Whakakapia te -\frac{5y}{2}-5 mō te x ki tērā atu whārite, 8x+10y=20.
-20y-40+10y=20
Whakareatia 8 ki te -\frac{5y}{2}-5.
-10y-40=20
Tāpiri -20y ki te 10y.
-10y=60
Me tāpiri 40 ki ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua ki te -10.
x=-\frac{5}{2}\left(-6\right)-5
Whakaurua te -6 mō y ki x=-\frac{5}{2}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=15-5
Whakareatia -\frac{5}{2} ki te -6.
x=10
Tāpiri -5 ki te 15.
x=10,y=-6
Kua oti te pūnaha te whakatau.
-4x-10y=20,8x+10y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&-10\\8&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-4\times 10-\left(-10\times 8\right)}&-\frac{-10}{-4\times 10-\left(-10\times 8\right)}\\-\frac{8}{-4\times 10-\left(-10\times 8\right)}&-\frac{4}{-4\times 10-\left(-10\times 8\right)}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{5}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 20+\frac{1}{4}\times 20\\-\frac{1}{5}\times 20-\frac{1}{10}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=-6
Tangohia ngā huānga poukapa x me y.
-4x-10y=20,8x+10y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\left(-4\right)x+8\left(-10\right)y=8\times 20,-4\times 8x-4\times 10y=-4\times 20
Kia ōrite ai a -4x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -4.
-32x-80y=160,-32x-40y=-80
Whakarūnātia.
-32x+32x-80y+40y=160+80
Me tango -32x-40y=-80 mai i -32x-80y=160 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-80y+40y=160+80
Tāpiri -32x ki te 32x. Ka whakakore atu ngā kupu -32x me 32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-40y=160+80
Tāpiri -80y ki te 40y.
-40y=240
Tāpiri 160 ki te 80.
y=-6
Whakawehea ngā taha e rua ki te -40.
8x+10\left(-6\right)=20
Whakaurua te -6 mō y ki 8x+10y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-60=20
Whakareatia 10 ki te -6.
8x=80
Me tāpiri 60 ki ngā taha e rua o te whārite.
x=10
Whakawehea ngā taha e rua ki te 8.
x=10,y=-6
Kua oti te pūnaha te whakatau.