Whakaoti mō x, y
x=-3
y=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x+y=6,-5x-y=21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x+y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=-y+6
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(-y+6\right)
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{4}y-\frac{3}{2}
Whakareatia -\frac{1}{4} ki te -y+6.
-5\left(\frac{1}{4}y-\frac{3}{2}\right)-y=21
Whakakapia te \frac{y}{4}-\frac{3}{2} mō te x ki tērā atu whārite, -5x-y=21.
-\frac{5}{4}y+\frac{15}{2}-y=21
Whakareatia -5 ki te \frac{y}{4}-\frac{3}{2}.
-\frac{9}{4}y+\frac{15}{2}=21
Tāpiri -\frac{5y}{4} ki te -y.
-\frac{9}{4}y=\frac{27}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{4}\left(-6\right)-\frac{3}{2}
Whakaurua te -6 mō y ki x=\frac{1}{4}y-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3-3}{2}
Whakareatia \frac{1}{4} ki te -6.
x=-3
Tāpiri -\frac{3}{2} ki te -\frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=-6
Kua oti te pūnaha te whakatau.
-4x+y=6,-5x-y=21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}6\\21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}6\\21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}6\\21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-4\left(-1\right)-\left(-5\right)}&-\frac{1}{-4\left(-1\right)-\left(-5\right)}\\-\frac{-5}{-4\left(-1\right)-\left(-5\right)}&-\frac{4}{-4\left(-1\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}&-\frac{1}{9}\\\frac{5}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}6\\21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}\times 6-\frac{1}{9}\times 21\\\frac{5}{9}\times 6-\frac{4}{9}\times 21\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=-6
Tangohia ngā huānga poukapa x me y.
-4x+y=6,-5x-y=21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\left(-4\right)x-5y=-5\times 6,-4\left(-5\right)x-4\left(-1\right)y=-4\times 21
Kia ōrite ai a -4x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -4.
20x-5y=-30,20x+4y=-84
Whakarūnātia.
20x-20x-5y-4y=-30+84
Me tango 20x+4y=-84 mai i 20x-5y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y-4y=-30+84
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-9y=-30+84
Tāpiri -5y ki te -4y.
-9y=54
Tāpiri -30 ki te 84.
y=-6
Whakawehea ngā taha e rua ki te -9.
-5x-\left(-6\right)=21
Whakaurua te -6 mō y ki -5x-y=21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x=15
Me tango 6 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te -5.
x=-3,y=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}