Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-4x+9y=9,x-3y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x+9y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=-9y+9
Me tango 9y mai i ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(-9y+9\right)
Whakawehea ngā taha e rua ki te -4.
x=\frac{9}{4}y-\frac{9}{4}
Whakareatia -\frac{1}{4} ki te -9y+9.
\frac{9}{4}y-\frac{9}{4}-3y=-6
Whakakapia te \frac{-9+9y}{4} mō te x ki tērā atu whārite, x-3y=-6.
-\frac{3}{4}y-\frac{9}{4}=-6
Tāpiri \frac{9y}{4} ki te -3y.
-\frac{3}{4}y=-\frac{15}{4}
Me tāpiri \frac{9}{4} ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{9}{4}\times 5-\frac{9}{4}
Whakaurua te 5 mō y ki x=\frac{9}{4}y-\frac{9}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{45-9}{4}
Whakareatia \frac{9}{4} ki te 5.
x=9
Tāpiri -\frac{9}{4} ki te \frac{45}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=9,y=5
Kua oti te pūnaha te whakatau.
-4x+9y=9,x-3y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&9\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-4\left(-3\right)-9}&-\frac{9}{-4\left(-3\right)-9}\\-\frac{1}{-4\left(-3\right)-9}&-\frac{4}{-4\left(-3\right)-9}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\-\frac{1}{3}&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9-3\left(-6\right)\\-\frac{1}{3}\times 9-\frac{4}{3}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=5
Tangohia ngā huānga poukapa x me y.
-4x+9y=9,x-3y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x+9y=9,-4x-4\left(-3\right)y=-4\left(-6\right)
Kia ōrite ai a -4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -4.
-4x+9y=9,-4x+12y=24
Whakarūnātia.
-4x+4x+9y-12y=9-24
Me tango -4x+12y=24 mai i -4x+9y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-12y=9-24
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=9-24
Tāpiri 9y ki te -12y.
-3y=-15
Tāpiri 9 ki te -24.
y=5
Whakawehea ngā taha e rua ki te -3.
x-3\times 5=-6
Whakaurua te 5 mō y ki x-3y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-15=-6
Whakareatia -3 ki te 5.
x=9
Me tāpiri 15 ki ngā taha e rua o te whārite.
x=9,y=5
Kua oti te pūnaha te whakatau.