Whakaoti mō x, y
x=4
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
-4x+5y=24,-2x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x+5y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=-5y+24
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(-5y+24\right)
Whakawehea ngā taha e rua ki te -4.
x=\frac{5}{4}y-6
Whakareatia -\frac{1}{4} ki te -5y+24.
-2\left(\frac{5}{4}y-6\right)+y=0
Whakakapia te \frac{5y}{4}-6 mō te x ki tērā atu whārite, -2x+y=0.
-\frac{5}{2}y+12+y=0
Whakareatia -2 ki te \frac{5y}{4}-6.
-\frac{3}{2}y+12=0
Tāpiri -\frac{5y}{2} ki te y.
-\frac{3}{2}y=-12
Me tango 12 mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{4}\times 8-6
Whakaurua te 8 mō y ki x=\frac{5}{4}y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10-6
Whakareatia \frac{5}{4} ki te 8.
x=4
Tāpiri -6 ki te 10.
x=4,y=8
Kua oti te pūnaha te whakatau.
y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
-4x+5y=24,-2x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}24\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&5\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}24\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}24\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-4-5\left(-2\right)}&-\frac{5}{-4-5\left(-2\right)}\\-\frac{-2}{-4-5\left(-2\right)}&-\frac{4}{-4-5\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}24\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{5}{6}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}24\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 24\\\frac{1}{3}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=8
Tangohia ngā huānga poukapa x me y.
y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
-4x+5y=24,-2x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\left(-4\right)x-2\times 5y=-2\times 24,-4\left(-2\right)x-4y=0
Kia ōrite ai a -4x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -4.
8x-10y=-48,8x-4y=0
Whakarūnātia.
8x-8x-10y+4y=-48
Me tango 8x-4y=0 mai i 8x-10y=-48 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y+4y=-48
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=-48
Tāpiri -10y ki te 4y.
y=8
Whakawehea ngā taha e rua ki te -6.
-2x+8=0
Whakaurua te 8 mō y ki -2x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=-8
Me tango 8 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te -2.
x=4,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}