Whakaoti mō x, y
x=5
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x+3y=-5,-7x+3y=-20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-4x+3y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-4x=-3y-5
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{4}\left(-3y-5\right)
Whakawehea ngā taha e rua ki te -4.
x=\frac{3}{4}y+\frac{5}{4}
Whakareatia -\frac{1}{4} ki te -3y-5.
-7\left(\frac{3}{4}y+\frac{5}{4}\right)+3y=-20
Whakakapia te \frac{3y+5}{4} mō te x ki tērā atu whārite, -7x+3y=-20.
-\frac{21}{4}y-\frac{35}{4}+3y=-20
Whakareatia -7 ki te \frac{3y+5}{4}.
-\frac{9}{4}y-\frac{35}{4}=-20
Tāpiri -\frac{21y}{4} ki te 3y.
-\frac{9}{4}y=-\frac{45}{4}
Me tāpiri \frac{35}{4} ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{4}\times 5+\frac{5}{4}
Whakaurua te 5 mō y ki x=\frac{3}{4}y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15+5}{4}
Whakareatia \frac{3}{4} ki te 5.
x=5
Tāpiri \frac{5}{4} ki te \frac{15}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=5
Kua oti te pūnaha te whakatau.
-4x+3y=-5,-7x+3y=-20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-4&3\\-7&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-4\times 3-3\left(-7\right)}&-\frac{3}{-4\times 3-3\left(-7\right)}\\-\frac{-7}{-4\times 3-3\left(-7\right)}&-\frac{4}{-4\times 3-3\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{7}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-5\right)-\frac{1}{3}\left(-20\right)\\\frac{7}{9}\left(-5\right)-\frac{4}{9}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=5
Tangohia ngā huānga poukapa x me y.
-4x+3y=-5,-7x+3y=-20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x+7x+3y-3y=-5+20
Me tango -7x+3y=-20 mai i -4x+3y=-5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4x+7x=-5+20
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=-5+20
Tāpiri -4x ki te 7x.
3x=15
Tāpiri -5 ki te 20.
x=5
Whakawehea ngā taha e rua ki te 3.
-7\times 5+3y=-20
Whakaurua te 5 mō x ki -7x+3y=-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-35+3y=-20
Whakareatia -7 ki te 5.
3y=15
Me tāpiri 35 ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 3.
x=5,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}