Whakaoti mō x, y
x=-\frac{14}{73}\approx -0.191780822
y = \frac{143}{73} = 1\frac{70}{73} \approx 1.95890411
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x-y-2x=-1
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
-5x-y=-1
Pahekotia te -3x me -2x, ka -5x.
-6x-15y=x+y-30
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x+5y.
-6x-15y-x=y-30
Tangohia te x mai i ngā taha e rua.
-7x-15y=y-30
Pahekotia te -6x me -x, ka -7x.
-7x-15y-y=-30
Tangohia te y mai i ngā taha e rua.
-7x-16y=-30
Pahekotia te -15y me -y, ka -16y.
-5x-y=-1,-7x-16y=-30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x-y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=y-1
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(y-1\right)
Whakawehea ngā taha e rua ki te -5.
x=-\frac{1}{5}y+\frac{1}{5}
Whakareatia -\frac{1}{5} ki te y-1.
-7\left(-\frac{1}{5}y+\frac{1}{5}\right)-16y=-30
Whakakapia te \frac{-y+1}{5} mō te x ki tērā atu whārite, -7x-16y=-30.
\frac{7}{5}y-\frac{7}{5}-16y=-30
Whakareatia -7 ki te \frac{-y+1}{5}.
-\frac{73}{5}y-\frac{7}{5}=-30
Tāpiri \frac{7y}{5} ki te -16y.
-\frac{73}{5}y=-\frac{143}{5}
Me tāpiri \frac{7}{5} ki ngā taha e rua o te whārite.
y=\frac{143}{73}
Whakawehea ngā taha e rua o te whārite ki te -\frac{73}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\times \frac{143}{73}+\frac{1}{5}
Whakaurua te \frac{143}{73} mō y ki x=-\frac{1}{5}y+\frac{1}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{143}{365}+\frac{1}{5}
Whakareatia -\frac{1}{5} ki te \frac{143}{73} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{14}{73}
Tāpiri \frac{1}{5} ki te -\frac{143}{365} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{14}{73},y=\frac{143}{73}
Kua oti te pūnaha te whakatau.
-3x-y-2x=-1
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
-5x-y=-1
Pahekotia te -3x me -2x, ka -5x.
-6x-15y=x+y-30
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x+5y.
-6x-15y-x=y-30
Tangohia te x mai i ngā taha e rua.
-7x-15y=y-30
Pahekotia te -6x me -x, ka -7x.
-7x-15y-y=-30
Tangohia te y mai i ngā taha e rua.
-7x-16y=-30
Pahekotia te -15y me -y, ka -16y.
-5x-y=-1,-7x-16y=-30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&-1\\-7&-16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&-1\\-7&-16\end{matrix}\right))\left(\begin{matrix}-5&-1\\-7&-16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-1\\-7&-16\end{matrix}\right))\left(\begin{matrix}-1\\-30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&-1\\-7&-16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-1\\-7&-16\end{matrix}\right))\left(\begin{matrix}-1\\-30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-1\\-7&-16\end{matrix}\right))\left(\begin{matrix}-1\\-30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{16}{-5\left(-16\right)-\left(-\left(-7\right)\right)}&-\frac{-1}{-5\left(-16\right)-\left(-\left(-7\right)\right)}\\-\frac{-7}{-5\left(-16\right)-\left(-\left(-7\right)\right)}&-\frac{5}{-5\left(-16\right)-\left(-\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{16}{73}&\frac{1}{73}\\\frac{7}{73}&-\frac{5}{73}\end{matrix}\right)\left(\begin{matrix}-1\\-30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{16}{73}\left(-1\right)+\frac{1}{73}\left(-30\right)\\\frac{7}{73}\left(-1\right)-\frac{5}{73}\left(-30\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{73}\\\frac{143}{73}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{14}{73},y=\frac{143}{73}
Tangohia ngā huānga poukapa x me y.
-3x-y-2x=-1
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
-5x-y=-1
Pahekotia te -3x me -2x, ka -5x.
-6x-15y=x+y-30
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x+5y.
-6x-15y-x=y-30
Tangohia te x mai i ngā taha e rua.
-7x-15y=y-30
Pahekotia te -6x me -x, ka -7x.
-7x-15y-y=-30
Tangohia te y mai i ngā taha e rua.
-7x-16y=-30
Pahekotia te -15y me -y, ka -16y.
-5x-y=-1,-7x-16y=-30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\left(-5\right)x-7\left(-1\right)y=-7\left(-1\right),-5\left(-7\right)x-5\left(-16\right)y=-5\left(-30\right)
Kia ōrite ai a -5x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
35x+7y=7,35x+80y=150
Whakarūnātia.
35x-35x+7y-80y=7-150
Me tango 35x+80y=150 mai i 35x+7y=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y-80y=7-150
Tāpiri 35x ki te -35x. Ka whakakore atu ngā kupu 35x me -35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-73y=7-150
Tāpiri 7y ki te -80y.
-73y=-143
Tāpiri 7 ki te -150.
y=\frac{143}{73}
Whakawehea ngā taha e rua ki te -73.
-7x-16\times \frac{143}{73}=-30
Whakaurua te \frac{143}{73} mō y ki -7x-16y=-30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x-\frac{2288}{73}=-30
Whakareatia -16 ki te \frac{143}{73}.
-7x=\frac{98}{73}
Me tāpiri \frac{2288}{73} ki ngā taha e rua o te whārite.
x=-\frac{14}{73}
Whakawehea ngā taha e rua ki te -7.
x=-\frac{14}{73},y=\frac{143}{73}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}