Whakaoti mō x, y
x=-4
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x-5y=17,-5x+6y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x-5y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=5y+17
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(5y+17\right)
Whakawehea ngā taha e rua ki te -3.
x=-\frac{5}{3}y-\frac{17}{3}
Whakareatia -\frac{1}{3} ki te 5y+17.
-5\left(-\frac{5}{3}y-\frac{17}{3}\right)+6y=14
Whakakapia te \frac{-5y-17}{3} mō te x ki tērā atu whārite, -5x+6y=14.
\frac{25}{3}y+\frac{85}{3}+6y=14
Whakareatia -5 ki te \frac{-5y-17}{3}.
\frac{43}{3}y+\frac{85}{3}=14
Tāpiri \frac{25y}{3} ki te 6y.
\frac{43}{3}y=-\frac{43}{3}
Me tango \frac{85}{3} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{43}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{3}\left(-1\right)-\frac{17}{3}
Whakaurua te -1 mō y ki x=-\frac{5}{3}y-\frac{17}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5-17}{3}
Whakareatia -\frac{5}{3} ki te -1.
x=-4
Tāpiri -\frac{17}{3} ki te \frac{5}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=-1
Kua oti te pūnaha te whakatau.
-3x-5y=17,-5x+6y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}17\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}17\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}17\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-3\times 6-\left(-5\left(-5\right)\right)}&-\frac{-5}{-3\times 6-\left(-5\left(-5\right)\right)}\\-\frac{-5}{-3\times 6-\left(-5\left(-5\right)\right)}&-\frac{3}{-3\times 6-\left(-5\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}17\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{43}&-\frac{5}{43}\\-\frac{5}{43}&\frac{3}{43}\end{matrix}\right)\left(\begin{matrix}17\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{43}\times 17-\frac{5}{43}\times 14\\-\frac{5}{43}\times 17+\frac{3}{43}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-1
Tangohia ngā huānga poukapa x me y.
-3x-5y=17,-5x+6y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\left(-3\right)x-5\left(-5\right)y=-5\times 17,-3\left(-5\right)x-3\times 6y=-3\times 14
Kia ōrite ai a -3x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
15x+25y=-85,15x-18y=-42
Whakarūnātia.
15x-15x+25y+18y=-85+42
Me tango 15x-18y=-42 mai i 15x+25y=-85 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y+18y=-85+42
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
43y=-85+42
Tāpiri 25y ki te 18y.
43y=-43
Tāpiri -85 ki te 42.
y=-1
Whakawehea ngā taha e rua ki te 43.
-5x+6\left(-1\right)=14
Whakaurua te -1 mō y ki -5x+6y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x-6=14
Whakareatia 6 ki te -1.
-5x=20
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te -5.
x=-4,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}