Whakaoti mō x, y
x=0
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x-2y=6,3x+3y=-9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x-2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=2y+6
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(2y+6\right)
Whakawehea ngā taha e rua ki te -3.
x=-\frac{2}{3}y-2
Whakareatia -\frac{1}{3} ki te 6+2y.
3\left(-\frac{2}{3}y-2\right)+3y=-9
Whakakapia te -\frac{2y}{3}-2 mō te x ki tērā atu whārite, 3x+3y=-9.
-2y-6+3y=-9
Whakareatia 3 ki te -\frac{2y}{3}-2.
y-6=-9
Tāpiri -2y ki te 3y.
y=-3
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=-\frac{2}{3}\left(-3\right)-2
Whakaurua te -3 mō y ki x=-\frac{2}{3}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2-2
Whakareatia -\frac{2}{3} ki te -3.
x=0
Tāpiri -2 ki te 2.
x=0,y=-3
Kua oti te pūnaha te whakatau.
-3x-2y=6,3x+3y=-9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&-2\\3&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{-2}{-3\times 3-\left(-2\times 3\right)}\\-\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{3}{-3\times 3-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-\frac{2}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6-\frac{2}{3}\left(-9\right)\\6-9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-3
Tangohia ngā huānga poukapa x me y.
-3x-2y=6,3x+3y=-9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-3\right)x+3\left(-2\right)y=3\times 6,-3\times 3x-3\times 3y=-3\left(-9\right)
Kia ōrite ai a -3x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
-9x-6y=18,-9x-9y=27
Whakarūnātia.
-9x+9x-6y+9y=18-27
Me tango -9x-9y=27 mai i -9x-6y=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+9y=18-27
Tāpiri -9x ki te 9x. Ka whakakore atu ngā kupu -9x me 9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=18-27
Tāpiri -6y ki te 9y.
3y=-9
Tāpiri 18 ki te -27.
y=-3
Whakawehea ngā taha e rua ki te 3.
3x+3\left(-3\right)=-9
Whakaurua te -3 mō y ki 3x+3y=-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-9=-9
Whakareatia 3 ki te -3.
3x=0
Me tāpiri 9 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}