Whakaoti mō x, y
x=-2
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x+y=8,-8x+2y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-y+8
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-y+8\right)
Whakawehea ngā taha e rua ki te -3.
x=\frac{1}{3}y-\frac{8}{3}
Whakareatia -\frac{1}{3} ki te -y+8.
-8\left(\frac{1}{3}y-\frac{8}{3}\right)+2y=20
Whakakapia te \frac{-8+y}{3} mō te x ki tērā atu whārite, -8x+2y=20.
-\frac{8}{3}y+\frac{64}{3}+2y=20
Whakareatia -8 ki te \frac{-8+y}{3}.
-\frac{2}{3}y+\frac{64}{3}=20
Tāpiri -\frac{8y}{3} ki te 2y.
-\frac{2}{3}y=-\frac{4}{3}
Me tango \frac{64}{3} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 2-\frac{8}{3}
Whakaurua te 2 mō y ki x=\frac{1}{3}y-\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2-8}{3}
Whakareatia \frac{1}{3} ki te 2.
x=-2
Tāpiri -\frac{8}{3} ki te \frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=2
Kua oti te pūnaha te whakatau.
-3x+y=8,-8x+2y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&1\\-8&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-\left(-8\right)}&-\frac{1}{-3\times 2-\left(-8\right)}\\-\frac{-8}{-3\times 2-\left(-8\right)}&-\frac{3}{-3\times 2-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{2}\\4&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8-\frac{1}{2}\times 20\\4\times 8-\frac{3}{2}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=2
Tangohia ngā huānga poukapa x me y.
-3x+y=8,-8x+2y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8\left(-3\right)x-8y=-8\times 8,-3\left(-8\right)x-3\times 2y=-3\times 20
Kia ōrite ai a -3x me -8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
24x-8y=-64,24x-6y=-60
Whakarūnātia.
24x-24x-8y+6y=-64+60
Me tango 24x-6y=-60 mai i 24x-8y=-64 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y+6y=-64+60
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=-64+60
Tāpiri -8y ki te 6y.
-2y=-4
Tāpiri -64 ki te 60.
y=2
Whakawehea ngā taha e rua ki te -2.
-8x+2\times 2=20
Whakaurua te 2 mō y ki -8x+2y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8x+4=20
Whakareatia 2 ki te 2.
-8x=16
Me tango 4 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -8.
x=-2,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}