Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x+y=10,-2x+4y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-y+10
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-y+10\right)
Whakawehea ngā taha e rua ki te -3.
x=\frac{1}{3}y-\frac{10}{3}
Whakareatia -\frac{1}{3} ki te -y+10.
-2\left(\frac{1}{3}y-\frac{10}{3}\right)+4y=0
Whakakapia te \frac{-10+y}{3} mō te x ki tērā atu whārite, -2x+4y=0.
-\frac{2}{3}y+\frac{20}{3}+4y=0
Whakareatia -2 ki te \frac{-10+y}{3}.
\frac{10}{3}y+\frac{20}{3}=0
Tāpiri -\frac{2y}{3} ki te 4y.
\frac{10}{3}y=-\frac{20}{3}
Me tango \frac{20}{3} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{10}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\left(-2\right)-\frac{10}{3}
Whakaurua te -2 mō y ki x=\frac{1}{3}y-\frac{10}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2-10}{3}
Whakareatia \frac{1}{3} ki te -2.
x=-4
Tāpiri -\frac{10}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=-2
Kua oti te pūnaha te whakatau.
-3x+y=10,-2x+4y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&1\\-2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&1\\-2&4\end{matrix}\right))\left(\begin{matrix}-3&1\\-2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-2&4\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&1\\-2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-2&4\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-2&4\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-3\times 4-\left(-2\right)}&-\frac{1}{-3\times 4-\left(-2\right)}\\-\frac{-2}{-3\times 4-\left(-2\right)}&-\frac{3}{-3\times 4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{1}{10}\\-\frac{1}{5}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 10\\-\frac{1}{5}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-2
Tangohia ngā huānga poukapa x me y.
-3x+y=10,-2x+4y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\left(-3\right)x-2y=-2\times 10,-3\left(-2\right)x-3\times 4y=0
Kia ōrite ai a -3x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
6x-2y=-20,6x-12y=0
Whakarūnātia.
6x-6x-2y+12y=-20
Me tango 6x-12y=0 mai i 6x-2y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+12y=-20
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=-20
Tāpiri -2y ki te 12y.
y=-2
Whakawehea ngā taha e rua ki te 10.
-2x+4\left(-2\right)=0
Whakaurua te -2 mō y ki -2x+4y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-8=0
Whakareatia 4 ki te -2.
-2x=8
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te -2.
x=-4,y=-2
Kua oti te pūnaha te whakatau.