Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x+y=1,-3x+2y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-y+1\right)
Whakawehea ngā taha e rua ki te -3.
x=\frac{1}{3}y-\frac{1}{3}
Whakareatia -\frac{1}{3} ki te -y+1.
-3\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=5
Whakakapia te \frac{-1+y}{3} mō te x ki tērā atu whārite, -3x+2y=5.
-y+1+2y=5
Whakareatia -3 ki te \frac{-1+y}{3}.
y+1=5
Tāpiri -y ki te 2y.
y=4
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\times 4-\frac{1}{3}
Whakaurua te 4 mō y ki x=\frac{1}{3}y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4-1}{3}
Whakareatia \frac{1}{3} ki te 4.
x=1
Tāpiri -\frac{1}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=4
Kua oti te pūnaha te whakatau.
-3x+y=1,-3x+2y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&1\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-\left(-3\right)}&-\frac{1}{-3\times 2-\left(-3\right)}\\-\frac{-3}{-3\times 2-\left(-3\right)}&-\frac{3}{-3\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}+\frac{1}{3}\times 5\\-1+5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=4
Tangohia ngā huānga poukapa x me y.
-3x+y=1,-3x+2y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x+3x+y-2y=1-5
Me tango -3x+2y=5 mai i -3x+y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-2y=1-5
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=1-5
Tāpiri y ki te -2y.
-y=-4
Tāpiri 1 ki te -5.
y=4
Whakawehea ngā taha e rua ki te -1.
-3x+2\times 4=5
Whakaurua te 4 mō y ki -3x+2y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+8=5
Whakareatia 2 ki te 4.
-3x=-3
Me tango 8 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
x=1,y=4
Kua oti te pūnaha te whakatau.