Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x+y=-7,3x+2y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+y=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-y-7
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-y-7\right)
Whakawehea ngā taha e rua ki te -3.
x=\frac{1}{3}y+\frac{7}{3}
Whakareatia -\frac{1}{3} ki te -y-7.
3\left(\frac{1}{3}y+\frac{7}{3}\right)+2y=4
Whakakapia te \frac{7+y}{3} mō te x ki tērā atu whārite, 3x+2y=4.
y+7+2y=4
Whakareatia 3 ki te \frac{7+y}{3}.
3y+7=4
Tāpiri y ki te 2y.
3y=-3
Me tango 7 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}\left(-1\right)+\frac{7}{3}
Whakaurua te -1 mō y ki x=\frac{1}{3}y+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-1+7}{3}
Whakareatia \frac{1}{3} ki te -1.
x=2
Tāpiri \frac{7}{3} ki te -\frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-1
Kua oti te pūnaha te whakatau.
-3x+y=-7,3x+2y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&1\\3&2\end{matrix}\right))\left(\begin{matrix}-3&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\3&2\end{matrix}\right))\left(\begin{matrix}-7\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\3&2\end{matrix}\right))\left(\begin{matrix}-7\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\3&2\end{matrix}\right))\left(\begin{matrix}-7\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-3}&-\frac{1}{-3\times 2-3}\\-\frac{3}{-3\times 2-3}&-\frac{3}{-3\times 2-3}\end{matrix}\right)\left(\begin{matrix}-7\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}&\frac{1}{9}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-7\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}\left(-7\right)+\frac{1}{9}\times 4\\\frac{1}{3}\left(-7\right)+\frac{1}{3}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-1
Tangohia ngā huānga poukapa x me y.
-3x+y=-7,3x+2y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-3\right)x+3y=3\left(-7\right),-3\times 3x-3\times 2y=-3\times 4
Kia ōrite ai a -3x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
-9x+3y=-21,-9x-6y=-12
Whakarūnātia.
-9x+9x+3y+6y=-21+12
Me tango -9x-6y=-12 mai i -9x+3y=-21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+6y=-21+12
Tāpiri -9x ki te 9x. Ka whakakore atu ngā kupu -9x me 9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9y=-21+12
Tāpiri 3y ki te 6y.
9y=-9
Tāpiri -21 ki te 12.
y=-1
Whakawehea ngā taha e rua ki te 9.
3x+2\left(-1\right)=4
Whakaurua te -1 mō y ki 3x+2y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-2=4
Whakareatia 2 ki te -1.
3x=6
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=-1
Kua oti te pūnaha te whakatau.