Whakaoti mō x, y
x=-3
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x+9y=27,-5x-8y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+9y=27
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-9y+27
Me tango 9y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-9y+27\right)
Whakawehea ngā taha e rua ki te -3.
x=3y-9
Whakareatia -\frac{1}{3} ki te -9y+27.
-5\left(3y-9\right)-8y=-1
Whakakapia te -9+3y mō te x ki tērā atu whārite, -5x-8y=-1.
-15y+45-8y=-1
Whakareatia -5 ki te -9+3y.
-23y+45=-1
Tāpiri -15y ki te -8y.
-23y=-46
Me tango 45 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -23.
x=3\times 2-9
Whakaurua te 2 mō y ki x=3y-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6-9
Whakareatia 3 ki te 2.
x=-3
Tāpiri -9 ki te 6.
x=-3,y=2
Kua oti te pūnaha te whakatau.
-3x+9y=27,-5x-8y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-3\left(-8\right)-9\left(-5\right)}&-\frac{9}{-3\left(-8\right)-9\left(-5\right)}\\-\frac{-5}{-3\left(-8\right)-9\left(-5\right)}&-\frac{3}{-3\left(-8\right)-9\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}27\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{69}&-\frac{3}{23}\\\frac{5}{69}&-\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}27\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{69}\times 27-\frac{3}{23}\left(-1\right)\\\frac{5}{69}\times 27-\frac{1}{23}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=2
Tangohia ngā huānga poukapa x me y.
-3x+9y=27,-5x-8y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\left(-3\right)x-5\times 9y=-5\times 27,-3\left(-5\right)x-3\left(-8\right)y=-3\left(-1\right)
Kia ōrite ai a -3x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
15x-45y=-135,15x+24y=3
Whakarūnātia.
15x-15x-45y-24y=-135-3
Me tango 15x+24y=3 mai i 15x-45y=-135 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-45y-24y=-135-3
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-69y=-135-3
Tāpiri -45y ki te -24y.
-69y=-138
Tāpiri -135 ki te -3.
y=2
Whakawehea ngā taha e rua ki te -69.
-5x-8\times 2=-1
Whakaurua te 2 mō y ki -5x-8y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x-16=-1
Whakareatia -8 ki te 2.
-5x=15
Me tāpiri 16 ki ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te -5.
x=-3,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}