Whakaoti mō x, y
x=-3
y=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x+3y=-9,6x-y=-12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+3y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-3y-9
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-3y-9\right)
Whakawehea ngā taha e rua ki te -3.
x=y+3
Whakareatia -\frac{1}{3} ki te -3y-9.
6\left(y+3\right)-y=-12
Whakakapia te y+3 mō te x ki tērā atu whārite, 6x-y=-12.
6y+18-y=-12
Whakareatia 6 ki te y+3.
5y+18=-12
Tāpiri 6y ki te -y.
5y=-30
Me tango 18 mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua ki te 5.
x=-6+3
Whakaurua te -6 mō y ki x=y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3
Tāpiri 3 ki te -6.
x=-3,y=-6
Kua oti te pūnaha te whakatau.
-3x+3y=-9,6x-y=-12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&3\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\\-\frac{6}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{1}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\left(-9\right)+\frac{1}{5}\left(-12\right)\\\frac{2}{5}\left(-9\right)+\frac{1}{5}\left(-12\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=-6
Tangohia ngā huānga poukapa x me y.
-3x+3y=-9,6x-y=-12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\left(-3\right)x+6\times 3y=6\left(-9\right),-3\times 6x-3\left(-1\right)y=-3\left(-12\right)
Kia ōrite ai a -3x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
-18x+18y=-54,-18x+3y=36
Whakarūnātia.
-18x+18x+18y-3y=-54-36
Me tango -18x+3y=36 mai i -18x+18y=-54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-3y=-54-36
Tāpiri -18x ki te 18x. Ka whakakore atu ngā kupu -18x me 18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
15y=-54-36
Tāpiri 18y ki te -3y.
15y=-90
Tāpiri -54 ki te -36.
y=-6
Whakawehea ngā taha e rua ki te 15.
6x-\left(-6\right)=-12
Whakaurua te -6 mō y ki 6x-y=-12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x=-18
Me tango 6 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 6.
x=-3,y=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}